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Abstract

Social norms are an important determinant of behavior, but the behavioral and

welfare effects of norms are not well understood. We propose and axiomatize a decision-

theoretic model in which a reference point is formed by the decision maker’s perceptions

of which actions are admired (prescriptive norms) and which are prevalent (descriptive

norms), and utility depends on the pride of exceeding the reference point or the shame

of falling below it. The model is simple, yet provides a unified explanation for previous

empirical findings, and is useful for behavioral and welfare analysis of norm-evoking

policies with a revealed preference approach.
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1 Introduction

Social norms are receiving increasing attention as a key determinant of behavior in various

contexts. Norms can take effect through simple interventions such as making decisions or

outcomes publicly observable1 or providing social information.2 As a result, policymakers

have become increasingly interested in social norms as a cost-effective policy lever to induce

desired behavioral changes.

Despite the growing interest, the behavioral and welfare effects of such policies are not

well understood. Norm-evoking policies may produce desired behavioral outcomes in some

cases, but they may fail to do so or even backfire in others.3 The lack of understanding is

partly due to the lack of theoretical foundations on how norms affect the decision maker’s

payoffs and how they are revealed from choice data. This gap also makes it unclear how

revealed preferences are useful for welfare analysis in norm-conscious decision-making.

This paper presents a novel decision-theoretic model to describe the behavior of a decision

maker (DM) who is concerned with social norms. We consider a two-stage choice problem

(Gul and Pesendorfer 2001; Noor and Takeoka 2015) adapted to decisions under social im-

age concerns (e.g. Dillenberger and Sadowski 2012; Saito 2015; Evren and Minardi 2017;

Hashidate 2021). The DM first privately chooses a menu (i.e., choice set) and then publicly

chooses an alternative from the menu. This setting naturally expresses the behavioral effect

of norms by the discrepancy between preferences in the private (norm-free) and public (norm-

conscious) stages, and is also suitable to study the avoidance of choice opportunities (e.g.,

Dana et al. 2006) or the welfare effects of norms. We axiomatize a utility representation

called a pride-shame representation, in which utility depends on an endogenously derived

reference point (cf. Ok et al. 2015; Lleras et al. 2019; Kıbrıs et al. 2023).

In our model, the reference point is determined by an interaction of two types of subjective

norms, referred to as descriptive norms and prescriptive norms. Economists typically em-

phasize descriptive norms, which express the DM’s perception of what behavior is prevalent

or common, i.e., what others choose to do. In contrast, social psychologists also emphasize

prescriptive norms (e.g., Cialdini et al. 1991; Bicchieri 2005; Bicchieri and Dimant 2022),

1Researchers have studied the effects of publicity on educational investment (Bursztyn and Jensen 2015),
career choice (Bursztyn et al. 2017), tax compliance (Perez-Truglia and Troiano 2018), charitable giving
(Butera et al. 2022, and see also DellaVigna et al. 2012), blood donations (Lacetera and Macis 2010), and
voting (Gerber et al. 2008). See Bursztyn and Jensen (2017) for a review.

2Information about other individuals’ behavior or normative opinions affects charitable donation (Frey
and Meier 2004), tax compliance (Frey and Torgler 2007; Hallsworth et al. 2017), energy conservation (Schultz
et al. 2007; Allcott 2011; Allcott and Rogers 2014), and female labor participation (Bursztyn et al. 2020).

3Publicity of decisions may increase or decrease target behavior (Bursztyn and Jensen 2015). Providing
information about the behavior of others may lead to the avoidance of a choice opportunity (Klinowski 2021)
or an undesirable choice (Schultz et al. 2007).
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which express the DM’s perception of what behavior is approved of or admired, i.e., what

others think one should do.4 Although economists have also studied prescriptive norms (e.g.,

Akerlof and Kranton 2000), they have not extensively studied how the two notions of norms

interact. We show, by an application to prosocial behavior, that interactions between these

norms can explain a variety of previously documented behavioral patterns. Crucially, the

two types of norms are the subjective beliefs of the DM and are allowed to be biased.

An essential determinant of behavior is social emotions, such as pride and shame, which

arise from comparing one’s own behavior with the typical behavior of others as reference

behavior. To illustrate, consider a DM who expects a donation solicitor to arrive at her

home shortly (DellaVigna et al. 2012). The DM’s satisfaction with donating an amount,

say $10, depends on how she perceives the behavior of others. If she believes that her

neighbors donate $0, then she gains a positive sense of pride from the $10 donation because

her behavior is perceived as normatively superior to that of her neighbors. The degree of

pride depends on the perceived desirability of each action: if donating $10 is considered much

(barely) more desirable than donating $0, then the payoff gain from pride is large (small). In

contrast, if she believes that her neighbors donate $100, she suffers a negative sense of shame

from donating $10 because her behavior is considered normatively inferior. The payoff loss

from shame, in turn, depends on the perceived admirability of each action. As this example

shows, descriptive norms determine which behavior the DM focuses on as reference behavior

(donating $0 or $100) to which to compare her own choice (donating $10), and prescriptive

norms determine the payoff from the comparison. The norms then affect the DM’s behavior.

Suppose she initially plans to donate $10, but then thinks that her neighbors are donating

$100. If a solicitor is already at her door, she may increase her planned donation to avoid

shame. Alternatively, if the solicitor has not yet arrived, she may leave the house, thereby

avoiding the opportunity to donate.

Using a simple example of prosocial behavior, we illustrate that our model provides

useful insights for the behavioral and welfare effects of norms. First, it clarifies how the

choice of an action depends on descriptive and prescriptive norms, and when policies such as

providing social information or making decisions public may be (in)effective. For example,

if information about others’ behavior (normative opinions) mainly affects the descriptive

(prescriptive) norm, then changing this perceived norm is the main mechanism behind the

effect of providing information. The effectiveness of the policy then depends on how sensitive

the perceived norms are to the policy and how the DM evaluates the resulting pride or shame.

Second, the two-stage modeling allows us to study choice avoidance and the welfare effects

of policies directly. For example, if a DM strictly prefers a menu {$0} over another menu

4Prescriptive norms are also known as injunctive norms (see Section 5 for terminology).
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{$0, $10}, this indicates her avoidance of an opportunity to donate $10, and a negative welfare

effect of making the choice public. Without using the preference over the menus, we might

draw a false welfare conclusion: e.g., if we only observe that the DM chooses a $10 donation

from the menu {$0, $10}, we might mistakenly infer that adding the option to donate $10 is

beneficial, even if she chooses it simply to avoid the shame from not donating.5 In addition,

our model illustrates how policies to influence perceived norms exert differential impacts

on the participation in a donation opportunity and on the donation decision conditional on

participation. For example, it can explain the laboratory findings of Klinowski (2021) that

informing individuals about others’ high level of donation after participation increases the

amount donated, but doing so before participation discourages participation.

Third, our model can account for behavioral regularities that are well documented in

psychology but have received limited attention in economics. For example, it can rationalize

previous findings that providing information about descriptive or prescriptive norms is more

effective at inducing prosocial behavior when they are aligned than when they are misaligned

(Cialdini 2003), and that the descriptive norm has a greater influence in the latter case (e.g.,

Bicchieri and Xiao 2009). An individual is more likely to make a donation when others say

that one should donate and they do donate, than when others say one should donate but

they do not. Intuitively, when both norms point to prosocial behavior, failure to follow them

generates shame. In contrast, if the prescriptive norm points to prosocial behavior but the

descriptive norm points to the opposite, acting prosocially generates pride. If avoiding shame

is a stronger motivator than seeking pride, which is empirically supported (DellaVigna et al.

2017; Butera et al. 2022), then aligned norms are more likely to induce prosocial behavior.

The first step toward axiomatically deriving our representation is to characterize the DM’s

subjective reference. Our approach is similar in spirit to that of Masatlioglu et al. (2012)

and Kıbrıs et al. (2023), who elicit the DM’s consideration and reference, respectively, by

observing a “choice reversal,” whereby removing an unchosen alternative from a menu affects

the choice from the menu. Instead of requiring a choice reversal, we exploit observations

such that removing an unchosen alternative affects the preference over menus. Suppose

we observe that the DM donates $10 whether or not she has the option to decline donation

(C({$0, $10}) = C({$10}) = {$10}), but that she strictly prefers to donate with the option to

decline ({$0, $10} � {$10}). This suggests that the option to decline donation improves the

DM’s utility from donating by generating pride, which then implies that $0 is the reference

choice at the menu {$0, $10}. We generalize this observation to elicit a subjective reference

set, i.e., the set of reference alternatives, at each menu.

The second key step is to describe how preferences for smaller or larger menus emerge

5This situation is similar to the situation of “product market traps” (Bursztyn et al. 2025).
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depending on the reference set. Consider first a DM who perceives that her neighbors do

not donate. Then, answering the door to meet a solicitor will never hurt ({$0, $10} � {$0}),
because she can decline the donation without shame, or she can even feel pride by choosing

to donate. Lemma 2(i), derived from our axioms, formalizes this idea: the DM will exhibit

a preference for larger menus (cf. Evren and Minardi 2017) when the additional alternatives

do not enter the reference set. Next, consider a DM who privately does not want to donate

({$0} � {$10}). Suppose she notices that some neighbors are donating $10, so $10 enters

her reference set when she faces the menu {$0, $10}. Then, the option to donate $10 will

not improve the DM’s feelings about not donating, because of the shame of falling below

her neighbors’ standard. She then prefers to avoid the donation option ({$0} � {$0, $10}).
Lemma 2(ii) characterizes such a preference: the DM will exhibit a preference for smaller

menus (cf. Gul and Pesendorfer 2001; Dillenberger and Sadowski 2012) when the extra

alternatives enter the reference set.

Our contribution is to propose a simple, tractable, and theoretically and axiomatically

founded model of norm-conscious decisions that facilitates applied analysis. (1) Our model

of norms using a descriptive norm and a prescriptive norm is simple, yet it can explain

various previous empirical findings. It also clarifies mechanisms behind policy effects, facili-

tating policy analysis. (2) The model is tractable in that it does not require an equilibrium

assumption; instead, it is directly disciplined by observed choices. Thus, the DM’s perceived

norms are allowed to be biased and are revealed from choice data. (3) The model is closely

aligned to the social psychological theory of norms and it also has an axiomatic foundation.

The transparent link between choice data and utility representation facilitates a revealed

preference approach to studying behavioral and welfare effects of norms and norm-evoking

policies, e.g., to infer who feel pride and who feel shame in a given situation (cf. Toussaert

2018), and welfare impacts of public recognition programs (Butera et al. 2022).

The paper is organized as follows. In Section 2, we illustrate our model and its im-

plications by a simple example of prosocial behavior. Section 3 presents our axioms and

the representation result. Section 4 discusses how our model can be useful for empirical

research. Section 5 reviews the literature. Section 6 concludes. Proofs and additional results

are presented in the Appendices.
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2 Illustrative Model

Denote a typical menu of alternatives by A. With a simplified version of our utility repre-

sentation, the preference � over menus is represented by

VPS(A) = max
x∈A

U(x;A), (1)

and the ex-post choice from each menu coincides with CPS(A) = arg maxx∈A U(x;A), where

U(x;A), the utility of choosing alternative x from A, is expressed as

U(x;A) = u(x)︸︷︷︸
intrinsic

−max {w(ϕr(A))− w(x), 0}︸ ︷︷ ︸
“shame”≥0

+βmax {w(x)− w(ϕr(A)), 0}︸ ︷︷ ︸
“pride”≥0

. (2)

In Eq. (2), β > 0, ϕr(A) = arg maxa∈A r(a), which is assumed to be a singleton for illustrative

purposes, and u,w, and r are expected utility (EU) functions.6 The function u represents the

DM’s intrinsic utility function, which describes her private preference ranking.7 The term

w(ϕr(A)) represents a social reference point, which consists of two distinct components.

First, the function r is called the descriptive norm function, which expresses the DM’s

perception of the prevalence of each alternative. ϕr(A) is then interpreted as the alternative

that the DM thinks is typically chosen by other people in her society. Second, the function

w is called the prescriptive norm function, which expresses the DM’s perception of the

admirability of each alternative. Together, w(ϕr(A)) represents the normative desirability

of the socially prevalent choice, as perceived by the DM. We allow the DM to have biased

beliefs about others’ behavior or normative opinions.

The last two terms in Eq. (2) denote the utility from social emotions. If the DM

chooses an alternative x that is normatively inferior to the reference alternative ϕr(A),

she feels shame, which reduces her utility by w(ϕr(A)) − w(x). Conversely, if she chooses

x that is normatively superior to ϕr(A), she feels pride, which increases her utility by

β [w(x)− w(ϕr(A))]. This modeling is closely aligned to the social psychological theory

of norms (see Section 5). Also, by letting β 6= 1, we allow the DM to care about a downward

6The EU may not well suit some contexts of social decision-making under uncertainty (e.g., Saito 2013).
However, it remains appropriate in contexts where the social consequences of actions involve probabilistic
uncertainty and can be meaningfully aggregated through expected values. For example, offering aid to a
politically corrupt and impoverished country may probabilistically result in either alleviating suffering among
the poor or entrenching the authority of a corrupt regime. Such cases are well suited to expected utility
analysis (Rabin 1995). While we acknowledge the limitations of the EU in capturing more complex forms
of moral uncertainty, we adopt it for tractability and as a first step. Extending the framework to broader
decision-making contexts is a promising direction for future research. Also, the applied analysis in Section
2.1 and Section 4 does not rely on the properties of the EU.

7u may capture not only her self-interest, but also other concerns such as altruism, warm glow, and moral
concerns that are not influenced by social image concerns.
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deviation from the reference point (shame) differently from an upward deviation (pride).8

2.1 A Simple Example of Prosocial Behavior

We illustrate the implications of our model by the following simple example. Let x ∈ A =

{0, 1} denote the DM’s choice of an alternative, where x = 1 indicates the DM engaging

in prosocial behavior, and x = 0 indicates non-engagement. Let u(0) = ū > 0 = u(1),

w(0) = 0 < w̄ = w(1), and βw̄ < ū < w̄. Thus, the DM privately prefers the non-prosocial

choice but believes that the prosocial choice is more admired. Also, β < 1 means that the

DM is more sensitive to shame than she is to pride.

Benchmark behavior. The DM chooses x = 0 or x = 1 by comparing the utility from

each alternative:

U(0; {0, 1}) = ū︸︷︷︸
intrinsic

− [w(ϕr({0, 1}))− 0]︸ ︷︷ ︸
shame

= ū− w(ϕr({0, 1}))

U(1; {0, 1}) = 0︸︷︷︸
intrinsic

+β [w̄ − w(ϕr({0, 1}))]︸ ︷︷ ︸
pride

= β [w̄ − w(ϕr({0, 1}))]
(3)

The expressions are simpler than Eq. (2) because x = 0 never causes pride and x = 1 never

causes shame, regardless of the reference alternative ϕr({0, 1}).
As a benchmark, suppose r(1) < r(0), i.e., the DM believes that other people in her soci-

ety do not typically engage in prosocial behavior. The reference alternative is ϕr({0, 1}) = 0

and the reference point is w(0) = 0. Choosing x = 0 gives the DM the intrinsic utility ū and

no utility from social emotion, because she chooses the action dictated by the norm. On the

other hand, choosing x = 1 gives the DM zero intrinsic utility but gives a positive utility

from pride. Since βw̄ < ū, the DM chooses x = 0.

Perceived norms and behavior. The model predicts how the DM’s behavior depends on

the descriptive and prescriptive norms. Consider the following analysis, where each type of

norms shifts toward prosocial behavior relative to the above benchmark.

(i) Higher descriptive norm. Suppose the descriptive norm function becomes r′ such that

r′(0) < r′(1), shifting the reference point to w(ϕr′({0, 1})) = w̄. Now, choosing x = 0

gives the DM utility ū− w̄ < 0, whereas choosing x = 1 yields zero utility. Thus, the

DM chooses x = 1.

8We emphasize the case with β ∈ (0, 1), which expresses shame aversion (cf. Butera et al. 2022), though
our theory allows for β ≥ 1. Also, it accommodates β = 0 as a limit case.
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(ii) Higher prescriptive norm. Suppose that the prescriptive norm function becomes w′

such that w′(0) = 0 and w′(1) = w̄′ > ū
β
. Then, choosing x = 1 provides a pride

benefit of βw̄′, which exceeds the utility ū from x = 0. Thus, the DM chooses x = 1.

The DM switches to prosocial behavior x = 1 in both cases, but for different reasons. In

case (i), she chooses x = 1 because she would feel shame if she stuck to the less admirable

choice x = 0 while perceiving that others choose x = 1. In contrast, in case (ii), she chooses

x = 1 because she feels greater pride from x = 1 perceiving that others choose x = 0.

This analysis is insightful for analyzing the effect of “norm nudges,” which guide people’s

decisions by providing social information. Many economic studies have explored the effect

on decisions of information about how others behave (e.g., Frey and Meier 2004; Allcott

2011) or what others think is the appropriate behavior (e,g, Hallsworth et al. 2017; Bursztyn

et al. 2020). Our model helps clarify the mechanisms underlying such a norm-nudging.

For example, if information about others’ behavior (normative opinions) mainly affects an

individual’s perceived descriptive (prescriptive) norm,9 then the main mechanism of the effect

of such information is to alter r (w) in favor of prosocial behavior, thereby generating shame

of non-prosociality (increasing pride of prosociality). Thus, the relative effectiveness of each

type of information depends on the DM’s sensitivity to each social emotion, expressed by β

(more on this below). Of course, effectiveness also depends on the quality of the information.

Public recognition and prosociality. The model illustrates how public observability

affects the DM’s prosociality. Her choice of action under a private decision environment is

expressed as a choice between two menus {0} and {1}, with the utility from each option

VPS({x}) = u(x) (note the absence of social emotions). By contrast, her choice under a

public environment is expressed as a choice between two actions 0 and 1 from the menu

{0, 1}, with the utility from each option U(x; {0, 1}) in Eq. (3).10 Because U(x; {0, 1}) is

strictly increasing in w(x), the DM becomes more prosocial in the public environment than

in the private environment. The above analysis also suggests when policies such as public

recognition programs are ineffective for inducing prosocial behavior: they are ineffective

when the descriptive and prescriptive norms do not sufficiently favor prosocial behavior, or

when the DM is relatively insensitive to pride.

Perceived norms and avoidance. The two-stage model enables us to study how norms

9In reality, information about one norm type may also affect the perception of the other.
10The private and public preferences represent norm-free and norm-conscious preferences, respectively.

Thus, our model applies to more general settings where some environmental cue (including publicity as an
example) triggers the DM to focus on norms.
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affect the DM’s decision to participate in the opportunity for prosocial behavior, as well as

her decision on prosocial behavior itself. Analysis of the participation decision is important

for two reasons. First, laboratory and field experiments have documented that a large

fraction of individuals avoid opportunities to engage in prosocial behavior, even if they can

choose non-engagement after participation and even if avoidance is costly (e.g., Dana et

al. 2006; Broberg et al. 2007; Lazear et al. 2012; DellaVigna et al. 2012; Andreoni et al.

2017; Klinowski 2021). Our model clarifies how such avoidance depends on the perceived

descriptive and prescriptive norms. Second, the participation decision is informative of the

DM’s willingness-to-pay (WTP) for publicity and can be used to study the welfare impacts

of policies such as public recognition programs, assuming that pride and shame are welfare-

relevant. For example, her valuation of the menu {0, 1} relative to that of the singleton

menu {0} is informative of her WTP for public recognition.11

Our model illustrates how perceived norms can differentially impact participation and

choice of action. Suppose that the DM first chooses whether to participate in the opportunity

for prosocial behavior. If she decides to participate, she proceeds to the binary-choice stage

described above. Alternatively, she can decide not to participate and be given a singleton

menu {0}, which gives her utility VPS({0}) = ū. In the benchmark case, participation

gives utility VPS({0, 1}) = max{U(0; {0, 1}), U(1; {0, 1})} = ū, and it is indifferent to non-

participation. Therefore, the DM can optimally participate in the opportunity and then

choose not to engage in prosocial behavior.

Now, suppose that the descriptive norm shifts toward prosocial behavior (i.e., r changes

to r′). A possible interpretation is that the DM updates her perception of the norm after

she is given information about others’ actions. By the above analysis, the DM switches to

prosocial behavior conditional on participation. On the other hand, with the descriptive

norm r′, we have VPS({0, 1}) = max{ū − w̄, 0} = 0 < VPS({0}), so the DM avoids the

opportunity for prosocial behavior. Thus, the more prosocial descriptive norm induces the

DM to take a prosocial action if she has no option to avoid the choice occasion, but it induces

her to avoid the occasion if possible.

The theoretical predictions match empirical evidence quite well. In a laboratory exper-

iment, Klinowski (2021) demonstrates that (1) when individuals receive information that

others have made a large donation after they participate in the opportunity, they increase

the amount of donation relative to the no-information benchmark, whereas (2) when they re-

ceive the same information prior to the decision to participate, the participation rate drops

11Butera et al. (2022) use an incentive-compatible mechanism to elicit individuals’ WTP for public recog-
nition, in the context of charitable behavior. Our framework infers the WTP using preferences over menus,
which might be useful when WTP-elicitation surveys are unavailable (e.g., naturally occurring data).
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relative to the benchmark. Our model can rationalize these findings by the shift of the

descriptive norm caused by the information treatment.

Aligned vs. misaligned norms. The simple model also explains why the descriptive

and prescriptive norms induce larger behavioral changes when they are aligned than when

they are misaligned (Cialdini 2003), and why the descriptive norm tends to trump the pre-

scriptive norm in the latter case (Tyran and Feld 2006; Bicchieri and Xiao 2009).12 When

the prescriptive norm dictates prosocial behavior (w(0) < w(1)) but the descriptive norm

dictates otherwise (r(0) > r(1)),13 the DM behaves prosocially if the pride benefit βw̄ out-

weighs the intrinsic benefit of non-engagement, ū. By contrast, when both norms point

to the prosocial behavior (w(0) < w(1) and r′(0) < r′(1)), she behaves prosocially if the

shame cost w̄ of non-engagement outweighs its intrinsic benefit. If the DM is shame-averse

(β < 1), which finds some empirical support,14 aligned norms induce prosocial behavior more

effectively than misaligned ones. In words, when both norms point to prosocial behavior,

failing to follow them causes shame for falling below social expectations, which is a strong

motivator for prosocial behavior. In contrast, when the prescriptive norms point to prosocial

behavior but the descriptive norms point to the opposite, the social motivation for prosocial

behavior is pride from exceeding social expectations, which may not be a strong motivator.

Thus, the DM will not feel pressure to respect the prescriptive norms and she will behave

non-prosocially, as the descriptive norms dictate.

Other results. In Supplemental Appendix S.B, we show that the model can explain other

previous empirical findings, e.g., why providing information on others’ prosocial behavior

can reduce the amount of prosocial behavior (e.g., Schultz et al. 2007).

3 Model

We adopt the framework of Gul and Pesendorfer (2001) (henceforth GP). Let (Z, ρ) be

a compact metric space, where Z is a finite set of prizes, and let ∆ ≡ ∆(Z) denote the

12Allcott (2011) and Hallsworth et al. (2017) find evidence that descriptive norm messages are more ef-
fective than prescriptive norm messages for inducing electricity saving and tax compliance, respectively.
Heinicke et al. (2022) find that descriptive norms exhibit a stronger correlation with behavior than prescrip-
tive norms in the context of mini-dictator games.

13The opposite misalignment (w̃(0) > w̃(1) and r′(0) < r′(1)) is irrelevant; the DM chooses x = 0 because
it is better both intrinsically and socially than x = 1, making r′(0) < r′(1) implausible and irrelevant. Put
differently, a relevant case should have conflicting u and w, and r may be aligned to either.

14Butera et al. (2022) find evidence for shame aversion in prosocial behavior. DellaVigna et al. (2017) find
that non-voters in an election sort out of a survey due to the negative feeling from admitting non-voting or
lying about it, while voters do not sort in to enjoy the positive feeling from saying that they voted.

9



set of probability measures on the Borel σ-algebra of Z endowed with the weak topology.

Denote by A a set of all closed subsets of ∆, and endow A with the topology generated

by the Hausdorff metric.15 A typical lottery a ∈ ∆ is called an alternative (or choice), and

a typical element A ∈ A, a set of alternatives, is called a menu (or choice set). Define

αA+ (1− α)B ≡ {z ∈ ∆ : z = αa+ (1− α)b, a ∈ A, b ∈ B} for A,B ∈ A and α ∈ [0, 1].

We consider a DM who has a preference � over menus and also makes a choice from a

menu by a choice rule C. Specifically, � is a binary relation over A, and C : A� ∆ satisfies

∅ 6= C(A) ⊆ A for all A ∈ A. We assume that both � and C are observed.

We consider a DM whose choice from a menu depends on a reference point that consists

of her subjective beliefs. Specifically, she references the alternative in the menu that she

believes is most commonly chosen by others. If multiple alternatives are perceived to be most

common, she references the one that she believes is the most admirable. She then derives a

positive (negative) emotion from her choice if she believes that it is more (less) admirable

than the reference alternative. The beliefs on prevalence/commonality are expressed as

descriptive norms, and the beliefs on admirability are expressed as prescriptive norms. The

preferences over menus reflect the anticipated payoffs from such emotions, although the

choices between menus per se do not generate such emotions. We capture this situation by

assuming a two-stage process, where the DM privately chooses a menu in the first stage and

then publicly chooses an alternative from the menu in the second stage.

3.1 Axioms

We first introduce some basic axioms.

Axiom 1. (Order) � is complete and transitive.

Axiom 2.

(i) (Lower Semi-Continuity) For any A ∈ A, {B ∈ A : A � B} is closed.

(ii) (Upper von Neumann-Morgenstern Continuity) A � B � C implies B �
αA+ (1− α)C for some α ∈ (0, 1) .

(iii) (Upper Singleton Continuity) {{b} ∈ A : {b} � {a}} is closed.

Axiom 1 is standard. Axioms 2(i)-(iii), similar to axioms in GP to characterize prefer-

ences without self-control, weaken standard continuity. They yield a reference point that

is of a “Strotz representation” (Strotz 1955), which may change discontinuously. Such a

specification seems attractive given that social preferences often feature discontinuities.16

15That is, dH(A,B) = max
{

maxa∈A minb∈B d(a, b),maxb∈B mina∈A d(a, b)
}
, where d is a metric that

metrizes the weak topology.
16E.g., an equal split in dictator games (cf. Andreoni and Bernheim 2009) may be a discontinuity point.
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We proceed by introducing a “revealed descriptive (norm) ranking” �r, which elicits the

DM’s subjective beliefs about the prevalence of each alternative from observed behavior.

Definition 1. (Revealed Descriptive Ranking)

(i) a �∗ b if there exists A 3 b such that A ∪ {a} � A and a /∈ C (A ∪ {a}).

(ii) a �r b if either of the following conditions holds:

a. a �∗ b.
b. There exists some c ∈ int(∆) such that c �∗ a and c �∗ b.

(iii) a ∼r b if neither a �r b nor b �r a, and a �r b if either a �r b or a ∼r b.

a �∗ b means that adding a to a menu A 3 b makes the menu more attractive (A∪{a} �
A) though a is unchosen (a /∈ C (A ∪ {a})). This suggests that a improves the menu A by

lowering its reference point. We then infer that the DM references a at A ∪ {a}, which we

interpret as her perceiving a to be more prevalent than the other alternatives in A, including

b.17 Case (ii-b) addresses technical difficulties when a is a boundary element in ∆ (see

Supplemental Appendix S.D).

Next, we define a “revealed prescriptive (norm) ranking” �w, which partially elicits the

DM’s subjective beliefs about the normative desirability/admirability of each alternative. It

is “partial” in that it elicits the true prescriptive norms w only among alternatives with the

same descriptive ranking (see Theorem 2).

Definition 2. (Revealed Prescriptive Ranking)

(i) a �w b if one of the following conditions holds.

a. {b} � {a, b}
b. {b} ∼ {a, b} and C ({a, b}) = {a}.
c. a ∼r b and {a} ∼ {a, b} � {b}.

(ii) a ∼w b if neither a �w b nor b �w a. a �w b if either a �w b or a ∼w b.

The elicitation of the prescriptive ranking is similar to that of the temptation ranking

(GP; Noor and Takeoka 2015). In case (i-a), adding a makes the menu {b} less attractive.

This suggests that a raises the reference point, which we interpret as the DM perceiving a to

be more admirable than b. In case (i-b), if b sets the reference point at {a, b}, then the DM

faces the same reference point as {b} but does not choose b, suggesting that she is strictly

17We do not infer strict descriptive rankings from preferences for smaller menus (A � A∪{a}). Theorem 2
shows that �r alone fully elicits the true descriptive norms r if the data are generated by our representation,
as long as �r is not constant. We use preferences for smaller menus to infer the prescriptive rankings (see
Definition 2), just as GP use them to infer the temptation rankings.
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better off at {a, b}, which contradicts {b} ∼ {a, b}. Thus, the reference point must be higher

at {a, b} than at {b}. Finally, in case (i-c), because both a and b enter the reference set at

{a, b}, the reference point is weakly higher at {a, b} than at {b}. Thus, {a, b} � {b} implies

that a is the unique choice at {a, b}. Then, {a} ∼ {a, b} implies that a must be weakly higher

in the prescriptive ranking than b (otherwise, the DM prefers to exclude b, so {a} � {a, b}).
Below, we focus on PS preferences such that the descriptive and prescriptive rankings are

observationally distinct;18 thus, in case (i-c), a ∼r b implies that a must be strictly higher

than b in the prescriptive ranking.

a �w b also implies that a is at least as high as b in the descriptive ranking; otherwise,

the DM does not reference a at {a, b}, so nothing about its normative desirability is revealed.

However, we do not use a �w b to infer the descriptive ranking, because it does not tell us

whether a is strictly higher than b or just as high as b in the descriptive ranking.19

A natural way for the DM to form her perception about socially prevalent actions is that

she imagines a “typical person” and uses that person’s behavior as a reference. Thus, we

impose axioms to rationalize the descriptive ranking as an expected utility (EU) of someone.

For simplicity, we directly impose axioms on �∗, �r, and �w, though we can rewrite them

as properties of (�, C) .

Axiom 3. (r-EU)

(i) If a �r b or a �w b, then neither b �r a nor b �w a.

(ii) �∗ is transitive. Also, if a ∼r b ∼r c, a �w b, and b �w c, then a �w c.
(iii) a. {α ∈ [0, 1] : αA+ (1− α)C � B} is closed in [0,1].

b. If there exists a∗ ∈ A such that a∗ �r a for all a ∈ A \ {a∗}, then for any {An}n
and {an}n such that An → A, an ∈ C (An) and an → a, we have a ∈ C (A).

(iv) For any α ∈ (0, 1), αa+ (1− α)c �∗ αb+ (1− α)c and a ∈ int(∆) imply a �∗ b.

Axiom 3(i) imposes consistency of descriptive rankings and prescriptive rankings revealed

by different observations.20 Recall a �r b reveals that a is perceived to be more prevalent

than b. Also, a �w b reveals that a is perceived to be at least as prevalent as b and more

admirable than b. Then, to consistently rank alternatives in prevalence and admirability,

the choice data should not reveal the opposite relations. Axiom 3(ii) states that the directly

revealed descriptive ranking �∗ is transitive and �w is transitive on the indifference set of

18Distinguishing descriptive and prescriptive norms is pointless if they coincide. In fact, our PS model with
identical descriptive and prescriptive norms is observationally equivalent to a PS model with no descriptive
norms, i.e., constant r. See also Example 1.

19Moreover, the true descriptive norms are fully revealed by �r alone, without using information of �w,
for nondegenerate cases (see Theorem 2).

20Similar axioms appear in Dillenberger and Sadowski (2012) and Kıbrıs et al. (2023).
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�r. Axiom 3(iii) expresses Archimedeanity of �r. Axiom 3(iv) imposes some linearity on

the descriptive ranking. Axiom 3(iv) is only required to deal with boundary elements.

Next, we introduce a weak version of the linearity of (�, C). Due to the potential asym-

metry between positive and negative social emotions, the standard independence axiom may

be violated. For example, suppose $0 �r $100 �r $10, i.e., the DM believes that donation is

uncommon but a large donation is common conditional on donating.21 Consider two menus

{$10, $100} and {$100}, both of which have a $100 donation as the reference alternative.

If the shame from donating a small amount despite the social expectation of a large dona-

tion is strong, the DM will conform to the expectation and donate $100 at both menus, so

{$10, $100} ∼ {$100}. Now, consider two menus, A = 0.5{$10, $100} + 0.5{$0, $10} and

B = 0.5{$100} + 0.5{$0, $10}, both having 0.5$100 + 0.5$0 as the reference (recall r is lin-

ear). If the reference point is sufficiently low (due to the possibility of $0), then the DM

may choose $10 from A, because it may strike a balance between self-interest and pride. In

contrast, such an option is unavailable at B. Thus, we may have A � B. This phenomenon

occurs because the relative attractiveness of two alternatives depends on the social emotions

they generate: $100 is preferred to $10 if both generate (possibly zero) shame, whereas the

converse is true if both generate (possibly zero) pride.

This discussion suggests that we should relax the linearity if mixing two menus alters

the types of social emotions generated by each alternative. However, we may keep the

linearity if the mixture preserves the types of social emotions.22 To formalize the idea,

let Lr(a) = {b ∈ ∆ : a �r b} denote the set of alternatives which is strictly below a in the

descriptive ranking �r. For an arbitrary a ∈ ∆, any b �r a belongs to exactly one of the

following sets:

P (a) = {b ∈ Lr(a) : {a, b} � {b} and C ({a, b}) = {b}} (4)

S (a) = {b ∈ Lr(a) : {a, b} ≺ {b} and C ({a, b}) = {b}} (5)

N1 (a) = {b ∈ Lr(a) : {a, b} ∼ {b} and C ({a, b}) = {b}} (6)

N2 (a) = {b ∈ Lr(a) : a ∈ C ({a, b})} (7)

I(a) = {b ∈ ∆ : b ∼r a} (8)

Eq.(4)-(7) partition the set of alternatives b that are below a in the descriptive ranking,

21Such a non-monotonic ranking can be generated by an EU function r such that the Bernoulli utility
function is non-monotonic in the amount of money donated. The non-monotonicity can arise if the Bernoulli
function is the sum of two functions, with one decreasing in the donated amount (e.g., representing selfish
monetary payoffs) and the other increasing in it (e.g., representing altruism or image concerns).

22This assumption leads to a parsimonious model that generates menu effects by the asymmetry between
pride and shame, which still provides useful insights, as illustrated in Section 2. A more general model would
allow the linearity to hold only conditional on the reference point, which would complicate the analysis.
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based on what social emotion the DM feels at the menu {a, b}. With b ∈ P(a), the DM

feels pride by choosing b at {a, b}: Because the DM chooses b at both {a, b} and {b} but

strictly prefers the former, we infer that the unchosen alternative a gives pride by lowering

the reference point. Similarly, with b ∈ S (a), the DM feels shame by choosing b at {a, b},
because a sets a higher reference point than b. With b ∈ N1 (a), the DM feels no social

emotion at {a, b} because the chosen alternative b is socially as desirable as the reference

alternative a. In these three cases, the DM would feel no social emotion if she deviated to

choosing a. With b ∈ N2 (a), the DM feels no social emotion at {a, b} because she chooses

the reference alternative, although she may feel pride or shame by deviating to b. Finally,

I(a) is the set of alternatives that are indifferent to a in the descriptive ranking. In this case,

she never feels pride, because the reference point is set by the most admirable alternative.

Now, let BP = {{a, b} ∈ A : a = b or b ∈ P(a) ∪N1(a)} collect the binary or single-

ton menus where the DM never feels shame from any alternative.23 Similarly, let BS =

{{a, b} ∈ A : a = b or b ∈ S(a) ∪N1(a) ∪ I(a)} collect the binary or singleton menus where

the DM never feels pride from any alternative. Finally, let BN = {{a, b} ∈ A : a = b or b ∈ N2(a)}
collect the singletons and binary menus where we cannot exclude any social emotion. Note

we have ∪j=P,S,NBj = {{a, b} : a, b ∈ ∆} and ∩j=P,S,NBj = {{a} : a ∈ ∆}. We now state our

linearity axioms on (�, C).

Axiom 4. (Weak Independence) For any α ∈ (0, 1),

(i) A,B,C ∈ BP and A � (�)B imply αA+ (1− α)C � (�)αB + (1− α)C.

(ii) A,B,C ∈ BS and A � (�)B imply αA+ (1− α)C � (�)αB + (1− α)C.

(iii) A,B ∈ A, c ∈ ∆ and A � (�)B imply αA+ (1− α) {c} � (�)αB + (1− α) {c} .

Axiom 5. (Weak Linearity) For any a, b, c, d ∈ ∆ and α ∈ (0, 1), the following properties

hold.

(i) Suppose {a, b} , {c, d} ∈ BP or {a, b} , {c, d} ∈ BS. Then C (α {a, b}+ (1− α) {c, d}) =

αC ({a, b}) + (1− α)C ({c, d}) .
(ii) Let A = α {a, b}+ (1− α) {a, c} and b ∈ N2(a).

a. If c ∈ P(a), {a, αb+ (1− α)c} � α {b}+(1−α) {a, c}, and C ({a, αb+ (1− α)c}) =

{αb+ (1− α)c}, then C (A) = αC ({a, b}) + (1− α)C ({a, c}).

b. If c ∈ S(a), α {b}+(1−α) {a, c} � {a, αb+ (1− α)c}, and C ({a, αb+ (1− α)c}) =

{αb+ (1− α)c}, then C (A) = αC ({a, b}) + (1− α)C ({a, c}).

(iii) For any A ∈ A, C (αA+ (1− α) {a}) = αC (A) + (1− α) {a} .
23We do not distinguish {a, b} from {b, a}: e.g., a ∈ P(b) implies {a, b} ∈ BP .

14



Axiom 4 states that the independence of � holds within the “pride domain” BP and

“shame domain” BS, and that it holds for mixtures with a singleton. Similarly, Axiom

5(i) states that domain-wise linearity of choice holds. Axiom 5(ii) is interpreted similarly,

but requires additional conditions to exclude the possibility that one of the mixed menus

generates pride and the other generates shame. For (ii-a), note that from b ∈ P(a) and

c ∈ N2(a), we know that a is superior to b and c in the descriptive ranking. Suppose we also

know {a, αb+ (1− α)c} � α {b}+(1−α) {a, c} and C ({a, αb+ (1− α)c}) = {αb+(1−α)c}.
This suggests that moving a towards b makes the menu less desirable, and this is not because

a is a preferred choice. We can then infer that a sets a reference point lower than b. Thus,

{a, b} never generates shame, so the linearity of choice holds if it is mixed with a menu that

never generates shame. Similarly, conditions in (ii-b) suggest that a sets the reference point

higher than b, so the linearity holds if {a, b} is mixed with a menu that never generates pride.

Finally, Axiom 5(iii) states that the linearity holds for to mixtures with a singleton.

The next axiom relates preferences � to ex-post choice C.

Axiom 6. (Sophistication) Suppose there exists a∗ ∈ A such that a∗ �r c for all c ∈ A∪B
and a∗ �w a for all a ∈ A.

(i) Suppose a∗ �w b for all b ∈ B. Then, A∪B � A. Moreover, A∪B � A if and only if

C (A ∪B) ∩ A = ∅.
(ii) Suppose b∗ �w a∗ for some b∗ ∈ B. Then, A ∪B � A implies C (A ∪B) ∩ A = ∅.

Axiom 6(i) concerns situations in which some a∗ ∈ A sets the reference point at A ∪ B.

Then, the DM weakly prefers the larger menu A∪B to A because it expands options without

changing the reference point. Moreover, the larger menu is strictly preferred if and only if

the added menu contains an option strictly better than all alternatives in A. Axiom 6(ii)

concerns situations in which an added alternative b∗ ∈ B sets a higher reference point than

the reference point at A. The DM then weakly prefers the larger menu only if the added

menu B contains a strictly better alternative to be chosen than alternatives in A.

The next axiom captures the DM’s shame attitude, i.e., how her social payoff depends on

the size and direction of the deviation of her choice from the reference point. We consider

a DM whose marginal utility from pride and that from shame are constant, respectively,

but who may care about pride and shame differently. The following axiom captures such an

attitude toward pride and shame. Let ea,b denote an alternative such that
{
ea,b
}
∼ {a, b}.

For {a, b} ∈ BS, such ea,b exists by Lemma S27 in Supplemental Appendix S.C.

Axiom 7. (Constant Shame Attitude) There exists a unique α ∈ (0, 1) such that, for

any a, b, c, d ∈ ∆ with c ∈ P(a)∩P(b) and d ∈ S(a)∩S(b), we have α {a, c}+(1−α)
{
eb,d
}
∼

α {b, c}+ (1− α)
{
ea,d
}

.
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To interpret Axiom 7, suppose c ∈ P(a)∩P(b) and {a, c} � {b, c}. At each menu, a or b

sets the reference point and the DM feels pride by choosing c. Then, a must be considered

normatively inferior to b and generates higher pride for choosing the same alternative c.

Suppose also d ∈ S(a) ∩ S(b). Then, similarly, the DM prefers {a, d} to {b, d} because a

generates lower shame than b does for choosing the same alternative d. Now, consider the

choice between two lotteries: lottery 1 yields the payoff from the high-pride menu {a, c} or

that from the high-shame menu {b, d} with probability α and 1−α, respectively, and lottery

2 yields the payoff from the low-pride menu {b, c} or that from the low-shame menu {a, d}
with the same mixing rate. As α increases, lottery 1 becomes more desirable, and the DM

will be indifferent between the lotteries at some α. Such α indicates the rate at which the

DM trades off the gain from more pride with the loss from more shame. Axiom 7 states that

this trade-off rate is constant. Moreover, the trade-off rate measures the degree of shame

aversion: the higher α, the more shame-averse the DM is, because she demands a higher

pride gain to compensate for the loss from shame.

Definition 3. (Shame attitudes) (i) The DM is α-sensitive to shame if her preference

(�, C) satisfies Axiom 7 with α ∈ (0, 1). (ii) The DM who is α-sensitive to shame is shame-

averse if α > 1
2
; shame-neutral if α = 1

2
; and shame-loving if α < 1

2
.

Our final axiom imposes some consistency of choices across menus. Consider the dona-

tion example above which features the violation of independence. There, the DM believes

that donation is uncommon but a large donation is common conditional on donating. Then,

she may choose $100 from {$10, $100} to avoid the shame of falling behind the social ex-

pectation of a large donation, whereas she may choose $10 from {$0, $10, $100} because a

small donation nicely balances self-interest with pride from exceeding the social expectation

of zero donation. This choice pattern violates the WARP. This pattern emerges because the

relative attractiveness of $10 and $100 changes as the reference point changes. This example

suggests the following axiom.

Axiom 8. (Weak WARP) For any A,B ∈ A, suppose there exists a∗ ∈ A ∩ B such that

a∗ �r c and a∗ �w c for all c ∈ A ∪ B. Then, a, b ∈ A ∩ B, a ∈ C (A) and b ∈ C (B) imply

a ∈ C (B).

a∗ �r a and a∗ �w a for all a ∈ A suggests that a sets the reference point at A. Thus,

Axiom 8 says that the standard WARP property applies to menus A and B which share a

common reference-setting alternative a∗.

3.2 Representation Theorem

We show that our axioms characterize the following utility representation.
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Definition 4. (�, C) is a pride-shame (PS) preference if there are continuous linear func-

tions u,w and r and a constant β > 0 such that � is represented by

VPS(A) = max
x∈A

U(x;A) (9)

and C coincides with CPS(A) = arg maxx∈A U(x;A), where U(x;A) is written as

U(x;A) = u(x)−max

{
max
y∈ϕr(A)

w(y)− w(x), 0

}
︸ ︷︷ ︸

“shame”

+βmax

{
w(x)− max

y∈ϕr(A)
w(y), 0

}
︸ ︷︷ ︸

“pride”

(10)

and ϕr(A) = arg maxa∈A r(a). This representation is called a PS representation.

maxy∈ϕr(A) w(y) is interpreted as the normative desirability that the DM perceives is

expected to achieve, which we simply call the reference point. It consists of two distinct

components. First, the descriptive norm function r represents the DM’s belief about the

prevalence/commonality of each alternative. The DM’s reference set ϕr(A) consists of alter-

natives which she believes is the most prevalent in A. Second, the prescriptive norm function

w represents the DM’s belief about the social desirability/admirability of each alternative.

When ϕr(A) contains multiple alternatives, the DM adopts the highest value of w in ϕr(A)

as the reference point.

We say that a DM with a PS preference feels pride (shame) by choosing a ∈ A at A if

w(a) − maxy∈ϕr(A) w(y) > (<)0. In words, the DM feels pride (shame) if she chooses an

alternative that she perceives is normatively superior (inferior) to the reference alternative.

Pride (shame) gives the DM a positive (negative) payoff. Because the DM may care about

shame differently than pride (Butera et al. 2022), we allow the DM to be more or less sensitive

to shame than to pride, by allowing β 6= 1.

The PS representation includes GP’s model as a degenerate case. For axiomatization,

however, we focus on a class of nondegenerate PS preferences.

Definition 5. (Nondegeneracy) (�, C) is nondegenerate if there exist x, y, y′ ∈ ∆ such

that y ∈ P(x) and y′ ∈ S(x).

Nondegeneracy ensures that the DM feels pride at some binary menu and shame at

another. The temptation preference of GP is degenerate. In Section 3.4, we show that such

a degenerate preference may accommodate non-unique PS representations. Thus, our main

theorem focuses on preferences that accommodate a unique PS representation up to positive

affine transformation (see Section 3.4). We can show that nondegeneracy holds generically

if dim(Z) ≥ 4. See Supplemental Appendix S.D for further discussions of nondegeneracy.

Note also that nondegeneracy is testable.
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We now state our main theorem.

Theorem 1. A nondegenerate preference (�, C) satisfies Axioms 1-8 if and only if it admits

a PS representation. Moreover, the decision maker is shame-averse if β < 1, shame-neutral

if β = 1, and shame-loving if β > 1.

3.3 Sketch of the Proof of Theorem 1

Our proof, formally presented in Appendix A, begins by verifying that the descriptive ranking

�r admits a linear representation r.

Lemma 1. If Axioms 1-5 hold, then �r admits a linear representation r. The representation

is unique up to positive affine transformation.

Define the reference correspondence as ϕr(A) = {a ∈ A : r(a) ≥ r(b) ∀b ∈ A} . We can

then show the following important properties of ϕr.

Lemma 2. If Axioms 1-6 hold, then the following conditions hold for any finite A,B ∈ A.

(i) ϕr(A ∪B) = ϕr(A) implies A ∪B � A.

(ii) ϕr(A ∪B) = ϕr(A) ∪ ϕr(B) and A � B imply A � A ∪B � B.

Lemma 2(i) states that if augmenting menu A by menu B does not affect the reference

set, then the DM weakly prefers the larger menu. In this case, the DM exhibits a preference

for larger menus (cf. Evren and Minardi 2017) because the addition will never worsen her

social emotion. In contrast, Lemma 2(ii) states that if the addition of alternatives expands

the reference set, then the set betweenness property (Gul and Pesendorfer 2001) holds. In

particular, the DM exhibits a preference for smaller menus (cf. Dillenberger and Sadowski

2012) because the addition will never improve her social emotion.

Lemma 2 implies that the preferences over finite menus can be characterized by at most

two elements in each menu.

Lemma 3. If Axioms 1-6 hold, then, for any finite menu A ∈ A, there exist a∗ ∈ A and

b∗ ∈ ϕr(A) such that A ∼ {a∗, b∗}.

The remaining components u and w can be constructed by an approach similar to Gul

and Pesendorfer 2001, although we address several technical difficulties due to the violation

of independence and WARP. We first show that there exists a function VPS that represents

� and satisfies some linearity. Let Af denote the set of all finite menus in A.

Lemma 4. If Axioms 1-6 hold, then there exists a function VPS that represents � on Af and

satisfies the following property: A,B ∈ BP or A,B ∈ BS implies VPS (αA+ (1− α)B) =

αVPS (A) + (1− α)VPS (B).
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Lemma 4 and nondegeneracy allow us to construct two linear functions, wP on the pride

domain and wS on the shame domain. Then, Axiom 7 implies that the two functions are

proportional: (1/β)wP (x) = wS(x) ≡ w(x) for some β > 0.24

We can show that the PS representation holds for all binary menus. Then, Lemma 3

allows us to extend the representation to all finite menus, and Axiom 2 further extends the

result to all menus in A. For choice C, Axiom 8 extends the representation to all menus.

3.4 Uniqueness of PS Representation

3.4.1 Uniqueness of Descriptive Norm Function

�r is unique given choice data (�, C), and the representation r of �r is unique up to positive

affine transformation. However, �r is merely a specific way to reveal the underlying descrip-

tive norms. In general, there can be two PS representations with different reference sets (i.e.,

different descriptive norm functions), such that both represent the same choice data.

Example 1. Suppose that the choice data (�, C) are generated by the temptation preference

of GP: VGP (A) = maxx∈A {u(x) + w(x)−maxy∈Aw(y)}. Then, a strict descriptive ranking

a �r b never occurs, so the descriptive norm function which rationalizes �r is a constant.

However, the data can also be represented by another PS preference with r = w, because

maxy∈ϕw(A) w(y) = maxy∈Aw(y). Thus, the data cannot distinguish the two models.

However, we show below that when the data are generated by a PS preference that

satisfies some nondegeneracy property, �r correctly elicits the true descriptive norm r. Thus,

among the PS preferences that satisfy the property, the descriptive norm function r which

is consistent with observed data is unique up to positive affine transformation. It turns out

that the following weak version of nondegeneracy is sufficient to ensure that the descriptive

norm function revealed by �r is the only one that is consistent with data.

Definition 6. (Weak Nondegeneracy) (�, C) is weakly nondegenerate if there exist some

ā, b̄ ∈ ∆ such that ā �∗ b̄.

Theorem 2. Suppose the data are generated by a weakly nondegenerate PS preference rep-

resented by (u,w, r, β). Then, the following statements hold. (i) r(a) > r(b) if and only if

a �r b. (ii) For a, b ∈ ∆ with r(a) = r(b), w(a) > w(b) if and only if a �w b.
24Another possible way is to construct w directly from �w. However, �w elicits the true prescriptive

ranking w only between alternatives with the same descriptive ranking, so such a proof will involve an
incomplete binary relation. Instead, we construct w from VPS and then show in Theorem 2 that w indeed
represents �w on the indifference sets of ∼r.
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Under weak nondegeneracy, the only descriptive norm r consistent with the data is the

one revealed by �r: if r and r′ are both consistent with the data, then r(a) ≥ r(b) ⇔
a �r b ⇔ r′(a) ≥ r′(b) for any a, b ∈ ∆. Weak nondegeneracy is implied by nondegeneracy,

so Theorem 1 focuses on the case where this uniqueness holds. Also, a similar uniqueness

result holds for the prescriptive norm w, among alternatives indifferent in ∼r. Note that the

preference in Example 1 is excluded by weak nondegeneracy. 25 See Supplemental Appendix

S.D for a graphical illustration of weak nondegeneracy and Theorem 2(i).

3.4.2 Uniqueness of (u,w, r, β)

We can also show that u and w are unique up to affine transformation and that β is unique,

when (�, C) satisfies the above axioms and nondegeneracy.

Proposition 1. Suppose a nondegenerate (�, C) satisfies Axioms 1-8. Then the following

statements are equivalent.

(i) If a PS representation (u,w, r, β) represents �, then (u′, w′, r′, β′) also represents �.

(ii) The following properties hold.

a. u′ = θu+ γu and w′ = θw + γw for some θ > 0 and γu, γw ∈ R.

b. r′ = θrr + γr for some θr > 0 and γr ∈ R.

c. β = β′

3.5 Comparing Shame Aversion

Definition 3 yields a notion of a DM being “more shame-averse” than another DM. For two

DMs i = 1, 2, let (�i, Ci) denote the preference of DM i.

Definition 7. Suppose DM i ∈ {1, 2} is αi-sensitive to shame. Then DM 1 is (weakly) more

shame-averse than DM 2 if α1 > (≥)α2.

We now state how the PS representation and observed behavior are linked in terms of

(relative) shame aversion. For i = 1, 2, let Pi and Si denote the set of pride-generating

binary menus P and the set of shame-generating binary menus S defined in Eq. (4) and (5),

respectively, for DM i. Also, let ex,yi ∈ ∆ be such that {ex,yi } ∼i {x, y}.

Proposition 2. Suppose DM 1 and DM 2 have a PS preference, with parameters β1 and β2,

respectively. Then, the following statements are equivalent.
25Conversely, if (�, C) violates weak nondegeneracy, then r is constant. Then, Lemma 2 reduces to Axiom

4 (Set Betweenness) of GP, and VPS in Lemma 4 satisfies linearity for all binary menus. Although we can
possibly pursue an axiomatization of the GP representation for this case, we omit it.
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(i) β1 < (≤)β2.

(ii) DM 1 is (weakly) more shame-averse than DM 2.

(iii) Take any α ∈ (0, 1) and any a, b, c, d such that c ∈ Pi(a) ∩ Pi(b), d ∈ Si(a) ∩ Si(b),

{a, c} �i {b, c} and {a, d} �i {b, d} for i = 1, 2. Then, α {b, c} + (1 − α)
{
ea,d2

}
�2

α {a, c}+(1−α)
{
eb,d2

}
implies α {b, c}+(1−α)

{
ea,d1

}
�1 (�1)α {a, c}+(1−α)

{
eb,d1

}
.

By the equivalence of (i) and (ii), β in the PS representation characterizes the DM’s

shame aversion. Also, the equivalence of (ii) and (iii) implies that we can compare the

shame aversion of two DMs by the following experiment: Consider two lotteries, lottery 1

giving the payoff of a high-pride menu {a, c} and that of a high-shame menu {b, d} with

probability α and 1 − α respectively, and lottery 2 giving the payoff of a low-pride menu

{b, c} and that of a low-shame menu {a, d} with probability α and 1 − α respectively. Ask

the DMs to choose between the two lotteries at various α. Then, DM1 is more shame-averse

than DM2 if and only if DM1 chooses the “safer” lottery 2 whenever DM2 does.

4 Empirical Perspective

Our PS model can provide a basis for a revealed preference approach to studying the be-

havioral and welfare effects of social norms and norm-evoking policies. Instead of requiring

highly rich data to verify all of the above axioms, researchers may assume that the choice

data are generated by a PS peference and then derive stronger conclusions about behavior

and welfare. We illustrate this point below. The proofs for the results in this section are

straightforward given the representation and hence relegated to Supplemental Appendix S.C.

Some of the most important empirical questions are about whether the descriptive and

prescriptive norms are different, and how they affect welfare. Economists typically emphasize

either descriptive norms alone or prescriptive norms alone. A small number of studies that

feature both (e.g., Allcott 2011; Hallsworth et al. 2017; Heinicke et al. 2022) do not provide

detailed mechanisms for how they interact to affect behavior and welfare. Our model pro-

poses that the descriptive and prescriptive norms influence behavior and welfare by shaping

social emotions, namely pride and shame, depending on how they are aligned. Thus, it is

crucial to ensure that empirical researchers can test whether descriptive and prescriptive

norms are different, and how pride and shame are distributed, in a given context of interest.

The following result suggests how we can test whether the descriptive and prescriptive

norms are distinct, and also how they are distinct from the intrinsic (i.e., private) preference.

Claim 1. Suppose the DM has a PS preference. Then, the following statements hold, where

‖ represents equality up to positive affine transformation.
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(i) r ∦ w if weak nondegeneracy holds.

(ii) u ∦ w, r if there exist some A ∈ A and a ∈ A such that {a} � A.

Claim 1 provides a basis for empirically distinguishing descriptive norms, prescriptive

norms, and intrinsic preferences. To illustrate, suppose a denotes making no donation and

b denotes making a donation. If an individual who chooses b anyway (C({a, b}) = {b} =

C({b})) is willing to make her decision publicly observed rather than leave it private ({a, b} �
{b}), then this indicates that r and w are different (in particular, r(a) > r(b) and w(a) <

w(b)). This is empirically testable, e.g., by asking individuals to choose whether they donate

and asking their WTP for publicly recognizing their decision (cf. Butera et al. 2022). Next,

if an individual avoids the opportunity to donate ({a} � {a, b}), this indicates that u is

different from w and r. This is again empirically testable, e.g., by asking the individual to

choose whether they want to participate in the choice opportunity, possibly with a cost of

avoidance (e.g., Dana et al. 2006; Broberg et al. 2007; Lazear et al. 2012; DellaVigna et al.

2012; Andreoni et al. 2017; Klinowski 2021).

Furthermore, the PS model allows us to test whether individuals feel pride or shame.

Recall that a DM feels pride (shame) by choosing a at A if w(a)−maxy∈ϕr(A) w(y) > (<)0.

Claim 2. Suppose (�, C) is a PS preference such that C({a, b}) = {b}.26 Then,

(i) the DM feels pride by choosing b at {a, b} if and only if {b} ≺ {a, b} � {a}.
(ii) the DM feels shame by choosing b at {a, b} if and only if {b} � {a, b} � {a}.

Importantly, Claim 2 allows us to investigate the heterogeneity in social emotions. In

many contexts, some people will feel pride while others feel shame (e.g., Butera et al. 2022).

Understanding such heterogeneity is important for welfare analysis as well as behavioral

predictions, because the welfare effects of policies can crucially depend on the distribution of

behavioral responses (Allcott et al. 2025). Our framework allows researchers to investigate

how behavioral responses to a policy and associated social emotions differ, e.g., between

female and male workers or between black and white students.

Finally, our framework facilitates an appropriate welfare analysis even when individuals

do not feel any social emotion. Recall the example of prosocial behavior in Section 2.1 with

norms (r′, w) such that r′(0) < r′(1) and w(0) < w(1). In this case, both norms dictate

prosocial behavior x = 1, and the DM follows the norms to avoid the shame from deviating

to x = 0, so she does not feel pride or shame from her choice. However, a public recognition

policy that forces the DM to make a choice at {0, 1} is welfare reducing relative to the outside

option of avoiding prosocial behavior in private ({0} � {0, 1}). Incorporating preferences

26If C({a, b}) = {a, b}, then the social emotion depends on the realization of the ex-post choice.
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over menus is useful to study the welfare effects of norms and norm-evoking policies with a

revealed preference approach, when social pressure forces the DM to choose an action that

she nonetheless wants to have removed (cf. Bursztyn et al. 2025).

5 Related Literature

Social Norms and Image Concerns. To the best of our knowledge, this paper is the first

to formalize and axiomatize the notion of descriptive and prescriptive norms in a decision-

theoretic model. In social psychology (Cialdini et al. 1991; Schultz et al. 2007), descriptive

norms refer to norms that dictate individuals to do what is typically done by others, and

prescriptive (or injunctive) norms refer to norms which dictate them to do what people

approve of. Bicchieri and Dimant (2022) define a social norm as a behavioral rule that

individuals prefer to follow because they believe that (i) others follow it and (ii) others think

it should be followed. In our model, social norms are shaped by two functions r and w, where

r represents the former belief (perception) and w represents the latter.27 Also, the DM feels

payoff-relevant social emotions by comparing her own choice with others’ choice (if r reflects

others’ choice), which closely follows the literature on social comparisons (Festinger 1954).

We also contribute to the growing literature on social pressure or image concerns (e.g.,

Bénabou and Tirole 2006, and see also footnote 1). Our contribution is to propose a model

with image concerns which is useful for applied analysis. By distinguishing the two types of

norms in a simple manner, the model explains various behavioral patterns parsimoniously,

and it clarifies the mechanisms behind the behavioral and welfare impacts of norms and norm-

evoking policies (see Section 2). Our model is also tractable in that it does not impose an

equilibrium assumption (unlike social signaling models); instead, it is directly disciplined by

observable choice data. This facilitates analysis of misperceived norms. Finally, our utility

representation is transparently linked to choice data, and it facilitates empirical analysis

based on revealed preferences. Section 4 discusses possible applied analyses.

Axiomatic Decision Theory. Our model relates to the axiomatic two-stage models of

choices with temptation (Gul and Pesendorfer 2001; Noor and Takeoka 2015) or social emo-

tions (Dillenberger and Sadowski 2012; Saito 2015; Evren and Minardi 2017; Hashidate

2021), and axiomatic models of endogenous reference points (Ok et al. 2015; Lleras et al.

2019; Kıbrıs et al. 2023). The former consider decision problems where the DM chooses a

menu of alternatives in the first stage and then chooses an alternative from the menu in the

27Bicchieri and Dimant (2022) refer to the former belief as empirical expectations and the latter as nor-
mative expectations, and they define a social norm as a behavioral rule governed by these expectations.
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second stage. The models with social emotions, including ours, also assume that the first

stage is private whereas the second stage is publicly observed, and that the DM anticipates

social emotions due to public observability when making the first-stage choice. However, our

model differs from the previous models in important ways. The latter models of endogenous

reference do not include preferences over menus, so our way to elicit reference is new. Below,

we discuss each paper in more detail.

Gul and Pesendorfer (2001) and Noor and Takeoka (2015) consider preferences over menus

of lotteries. Noor and Takeoka (2015) also use choices from each menu, as we do, to derive

a Menu-Dependent Self-Control (MDSC) representation. In the MDSC representation, the

self-control cost (similar to the social payoffs in our model) of choosing x fromA is specified by

ψ (maxy∈Aw(y)) (maxy∈Aw(y)− w(x)), where ψ(·) ≥ 0. Both their and our representations

generalize the GP representation by relaxing the independence axiom (and WARP). While

their self-control cost function is more flexible than our piecewise linear “cost” of social

emotions, our emotional cost can be negative, which is essential for generating pride.

Dillenberger and Sadowski (2012) and Evren and Minardi (2017) study preferences over

menus consisting of social allocations of non-stochastic objects (e.g., dictator games). Dil-

lenberger and Sadowski (2012) characterize shame, which involves a preference for smaller

menus. In contrast, Evren and Minardi (2017) characterize warm-glow, which involves a

preference for larger menus. Our axioms capture both types of preferences, depending on

whether adding alternatives to a menu expands the reference set (see Lemma 2).

Saito (2015) and Hashidate (2021) study preferences over menus consisting of social

allocations p = (pi)i∈{1}∪S of lotteries, where 1 denotes the DM and S denotes the set of other

agents. Saito (2015) derives the generalized utilitarian (GU) representation, which generates

the pride β1 maxq∈A α1(u(q1) − u(p1)) > 0 of acting altruistically if the DM compromises

her private payoff, and the shame −βS maxr∈A(
∑

i∈S αiu(ri) −
∑

i∈S αiu(pi)) < 0 of acting

selfishly if the DM compromises other agents’ private payoffs.28 Hashidate (2021) generalizes

the GU representation, allowing for various social emotions. Their models generate social

emotions by comparing the DM’s or other agents’ private payoffs to reference points. In

contrast, pride and shame in our model arise from the comparison of the perceived normative

desirability of the own choice against the reference alternative’s desirability. We believe

separating these emotions from private payoffs is vital for two reasons. First, our model

formalizes the concept of social norms discussed above closely. Moreover, we argue that pride

and shame should depend on the degree to which the DM can live up to social expectations

28Saito (2015) allows for β1 < 0, expressing the case of the temptation to act selfishly.

24



(norms), not the degree to which the DM’s or other agents’ private payoffs are sacrificed.29

Second, our formulation explains empirical findings discussed in Section 2 straightforwardly.

For example, when information about others’ behavior alters the DM’s choice, it is plausibly

due to changes in perceived norms, rather than changes in private payoffs.

Our model also has differences from previous axiomatic models of endogenous reference

dependence,30 besides how to elicit the reference. Ok et al. (2015) characterize choice be-

havior which exhibits the “attraction effect.” In their model, a dominated (hence unchosen)

alternative serves as a reference alternative and restricts the choice set to alternatives that

dominate it. In contrast, in our model, the reference alternative may be chosen, and it affects

the preferences (beliefs) but not choice sets. Lleras et al. (2019) consider a preference over

state-contingent contracts (acts) and derive a representation that evaluates an act based on

its expected value and expected gain/loss relative to the expected value. Their representation

allows the DM to derive payoffs from either expected gain or loss, but not both. In contrast,

the DM in our model may feel pride from an alternative and shame from another. Kıbrıs et

al. (2023) consider choice problems generated from a finite set of alternatives, and derive a

model where the reference point is determined by an endogenously derived conspicuity rank-

ing, just as an endogenously derived r defines reference in our model. Their representation

is quite general, but they do not characterize a specific structure of the reference point in

our model, so our axiomatization result is not implied by their work.

6 Conclusion

Despite the growing interest in using social norms to influence behavior, their behavioral and

welfare effects are not well understood. We propose and axiomatize a model of reference-

dependent decision-making in which the decision maker’s perception of others’ choice (de-

scriptive norm) and her perception of others’ normative opinions (prescriptive norm) together

shape a reference point. The key drivers of behavior are social emotions, specifically a pos-

itive payoff from pride, which she enjoys if her choice exceeds the reference point, and a

negative payoff from shame, which she suffers if her choice falls short of it. The simple

model provides useful implications, e.g., when public recognition programs or norm nudges

likely induce prosocial behavior, how policies can incentivize more prosocial behavior but

also induce choice avoidance. It also explains why aligned descriptive and prescriptive norms

are more effective for inducing prosocial behavior compared to misaligned ones, and why the

29Scheff (1988) discusses how perceived social expectations set a system in which conformity to norms is
sustained by the reward of pride and punishment of shame.

30Köszegi and Rabin (2006) develop a non-axiomatic model of endogenous reference formation. In their
model, the agent’s reference point is constrained by rational expectations.
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descriptive norms may have a larger impact in the latter case. Moreover, the model is sim-

ple yet useful to study the mechanisms behind policy effects, tractable because it does not

impose an equilibrium assumption, and transparent in its relation to observed choice, which

may usefully guide empirical analysis based on a revealed preference approach.

This paper has several limitations. First, our model relies on expected utility functions,

which may not fully capture the complexity of social decision-making particularly when indi-

viduals care not only about outcomes but also about how those outcomes are generated (cf.

Saito 2013). Second, we do not model how individuals’ perceptions are shaped. For example,

they may arise as equilibrium objects of a game (cf. Bénabou and Tirole 2006), and an equi-

librium restriction may be necessary to study how norms evolve over time. Alternatively,

individuals may form perceptions in a self-serving manner (Heinicke et al. 2022; Bicchieri et

al. 2023), and this process may be crucial for predicting the effects of norm nudges. Third,

norms may be specified more flexibly. For example, an individual may compare her be-

havior with the behavior of a group of individuals rather than that of a “typical person.”

The reference point may then depend on the distribution of the descriptive norms of others,

yielding a “random Strotz” representation (Dekel and Lipman 2012). Eliciting information

on individuals’ reference groups from their choice is an interesting topic for future research.
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A Proofs

We first prove the sufficiency part of Theorem 1, i.e., that Axioms 1-8 are sufficient for a

nondegenerate preference to have a PS representation. We next prove Theorem 2, which is

used to show the necessity part of Theorem 1, i.e., that the representation implies the axioms.

Finally, we prove the remaining results. Straightforward results and proofs, including the

proof of the necessity part, are relegated to Supplemental Appendix S.C.

We denote a mixed lottery αa+(1−α)b ∈ ∆ by aαb and a mixed menu αA+(1−α)B ∈ A
by AαB, for any a, b ∈ ∆, A,B ∈ A, and α ∈ [0, 1].

We note that under Axioms 1-5, the definition of �r can be simplified as follows: a �r b
if and only if there exists some c ∈ int(∆) such that c �∗ a and c �∗ b. See Lemma S21.

Below, we use this simplification without mention.

A.1 Proof of Theorem 1 (Sufficiency of Axioms)

A.1.1 Proof of Lemma 1

We prove that �r satisfies the following properties.

Completeness. Immediate from the definition of �r.
Transitivity. It is straightforward to show that �r is transitive (see Lemma S22). Now,

suppose a �r b �r c. If a �r b �r c, then a �r c. Next, suppose a �r b ∼r c. Then, we have

d �∗ a and d �∗ b for some d ∈ int(∆). By, b ∼r c, we have d �∗ c, hence a �r c. We can

similarly show a �r c if a ∼r b �r c. Finally, suppose a ∼r b ∼r c. If a �r c, then we have

c �r a ∼r b, so the above argument yields c �r b, a contradiction. Thus, a �r c.
Independence. Suppose a �r b. Then d �∗ a and d �∗ b for some d ∈ int(∆). We then

have dαc �∗ bαc (see Lemma S19), and Axiom 3(iv) implies dαc �∗ aαc, so aαc �r bαc.
Archimedeanity. Let a �r b �r c. Then, there exist d, e ∈ int(∆) such that d �∗ a,

d �∗ b, e �∗ b, and e �∗ c. By Lemma S20 and Axiom 3(iv), we have dαc �∗ aαc, dαc �∗ b,
and e �∗ aβc for some α, β ∈ (0, 1). Thus, we have aαc �r b �r aβc.

Thus, by the Mixture Space Theorem, �r admits a linear representation r, and the

representation is unique up to positive affine transformation.

A.1.2 Proof of Lemma 2

(i) If A � A ∪ B, then there exists b ∈ B \ A such that b �r a or b �w a for all a ∈ A (see

Lemma S24(i)). By Axiom 3(i), we have b �r a, hence r(b) ≥ r(a), for all a ∈ A. Thus,

ϕr (A ∪B) 6= ϕr (A) .
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(ii) Suppose ϕr (A ∪B) = ϕr (A) ∪ ϕr (B) and A � B. If A � B � A ∪ B, then by

Lemma S24(i) there exist some a∗ ∈ A \ B such that a∗ �r b or a∗ �w b for all b ∈ B and

some b∗ ∈ B \ A such that b∗ �r a or b∗ �w a for all a ∈ A, which contradicts Axiom 3(i).

Next, suppose A ∪ B � A � B. Note that at least one of C (A ∪B) ∩ A or C (A ∪B) ∩ B
is nonempty. If C (A ∪B) ∩ A 6= ∅, then there exists b ∈ B \ A such that r(b) > r(a) for all

a ∈ A (see Lemma S24(ii)). Then, ϕr (A ∪B) = ϕr (B) 6= ϕr (A) ∪ ϕr (B), a contradiction.

A similar contradiction results if C (A ∪B) ∩B 6= ∅. Thus, A � A ∪B � B.

A.1.3 Proof of Lemma 3.

For any a ∈ A, pick ba ∈ ϕr (A) such that {a, b} � {a, ba} for all b ∈ ϕr (A). Let a∗ ∈ A be

such that {a∗, ba∗} � {a, ba} for all a ∈ A and let b∗ ≡ ba∗ . Then, iteratively applying Lemma

2(ii), {a∗} ∪ ϕr (A) = ∪b∈ϕr(A) {a∗, b} � {a∗, b∗}. Further, because A = ({a∗} ∪ ϕr (A)) ∪
(A \ ({a∗} ∪ ϕr (A))) and ϕr (A) = ϕr ({a∗} ∪ ϕr (A)), applying Lemma 2(i) yields A �
{a∗} ∪ ϕr (A) � {a∗, b∗}. Next, by construction, {a∗, b∗} � {a, ba} for all a ∈ A. Then

iteratively applying Lemma 2(ii) yields {a∗, b∗} � ∪a∈A {a, ba} = A.

A.1.4 Proof of Lemma 4

For j ∈ {P, S}, let Aj =
{
A ∈ A : A =

∑M
m=1 αmAm, Am ∈ Bj,M <∞

}
denote the set of

finite mixtures over Bj. Also, for notational simplicity, define AN = BN . By Lemma 1 of GP,

for each j ∈ {P, S}, � restricted toAj has a linear representation V j. In addition, by Axioms

3 and 6, b ∈ N2(a) implies {a, b} ∼ {a} (see Lemma S25). Therefore, for each A ∈ AN , we

have A ∼
{
aA
}

for some known aA ∈ A. Thus, V N(A) ≡ V P (
{
aA
}

) represents � on AN .

By Lemma 1 of GP, each representation’s restriction to singleton sets is continuous.

By construction, for any j, k ∈ {P, S,N}, V j ({a}) ≥ V j ({b}) ⇔ {a} � {b} ⇔
V k ({a}) ≥ V k ({b}). The linear representation of � on singletons is unique up to positive

affine transformation, so we can normalize V j so that V j ({a}) = V k ({a}) ≡ V singleton ({a})
for all a and all j, k.

To link representations of � across different domains, we note that if A ∈ AS ∪AN , then

there exists some e ∈ ∆ such that A ∼ {e} (see Lemma S27). Intuitively, such A is either

indifferent to some a ∈ A, or we can find a, a′ ∈ A such that {a′} � A � {a}, in which case

A is indifferent to a′αa for some α.

We now obtain the desired representation of � on AP ∪ AS ∪ AN , which contains all

binary menus. For notational simplicity, in Lemma 5, we eliminate from AP menus which

are contained in AS (i.e., AP denotes AP \ AS).31

31Such duplicates arise from menus {a, b} such that b ∈ N1(a), which belongs to BP ∩ BS .
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Lemma 5. Suppose Axioms 1-6 hold. Define V : AP ∪ AS ∪ AN → R by

V (A) =
∑

j∈{P,S,N}

V j (A)× I {A ∈ Aj and |A| > 1}+ V singleton (A)× I {|A| = 1} .

Then, V represents � on AP ∪ AS ∪ AN . Moreover, A,B ∈ BP or A,B ∈ BS implies

V (AαB) = αV (A) + (1− α)V (B).

Proof. Note any A ∈ AP∪AS∪AN belongs to exactly one of {B ∈ Aj : |B| > 1}, j = P, S,N ,

or {B : |B| = 1} (by the re-definition of AP ). Suppose A � B for A ∈ Aj and B ∈ Ak. If

|A| = 1, then V (A) = V singleton (A) = V k (A) > V k (B) = V (B). A similar result obtains

if |B| = 1. Now, suppose |A| > 1 and |B| > 1. If j = k = P , then V (A) = V P (A) >

V P (B) = V (B). Otherwise, by Lemma S27, there exists some e ∈ ∆ such that A ∼ {e} or

B ∼ {e}. For the former case, V (A) = V j (A) = V j ({e}) = V k ({e}) > V k (B) = V (B) ,

thus V (A) > V (B). Proof for the latter case is analogous. Thus, A � B ⇒ V (A) > V (B)

holds. Similarly, B � A⇒ V (B) ≥ V (A) holds.

To prove the last statement, note that for A ∈ Aj, j ∈ {P, S}, we have V (A) = V j (A).

Because AαB ∈ Aj for any A,B ∈ Bj, we obtain V (AαB) = V j (AαB) = αV j (A) + (1 −
α)V j (B) = αV (A) + (1− α)V (B).

Finally, we obtain the desired representation as follows. Take V from Lemma 5 and

define, for each finite A ∈ A, VPS (A) = V
(
{aA∗, bA∗}

)
where aA∗ ∈ A and bA∗ ∈ ϕr (A) are

constructed as in Lemma 3. Then A � B ⇔
{
aA∗, bA∗

}
�
{
aB∗, bB∗

}
⇔ V

({
aA∗, bA∗

})
≥

V
({
aB∗, bB∗

})
⇔ VPS (A) ≥ VPS (A) . Thus, we have obtained the desired function VPS.

We additionally have the following result, analogous to GP.

VPS(A) = max
a∈A

min
b∈ϕr(A)

VPS({a, b}) = min
b∈ϕr(A)

max
a∈A

VPS({a, b}). (11)

Proof is straightforward given the proof of Lemma 3, hence omitted.

A.1.5 Proof of Theorem 1 (Sufficiency), Continued

For some two-component mixtures (denoted A) of binary menus, Axioms 5 and 6 identify a

binary subset of A to which A is indifferent. (Proof is in Supplemental Appendix S.C.)

Lemma 6. Suppose Axioms 1-6 hold. Let A = {a, b}α {c, d} ∈ A. Then, the following

statements hold.

(i) If b ∈ P(a) ∪N1(a) and d ∈ P(c) ∪N1(c), then A ∼ {aαc, bαd}.
(ii) If b ∈ S(a) ∪N1(a) and d ∈ S(c) ∪N1(c), then A ∼ {aαc, bαd}.
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(iii) If b ∈ I(a), {a, b} � {a}, and d ∈ S(c), then, {aαc, bαd} � A. If, in addition,

{b} � {a, b}, then {aαc, bαd} ∼ A.

(iv) Suppose b ∈ I(a), {b} � {a, b} ∼ {a}, a ∈ C ({a, b}), and d ∈ S(c). Then, A ∼
{a}α {c, d} � {aαc, bαd}, and the latter relation is strict if and only if C ({a, b}) = {a}.

(v) Suppose b ∈ I(a), {a} ∼ {a, b} ∼ {b}, and d ∈ S(c). Then:

(v-a) C ({a, b}) = {a} implies {bαc, aαd} � A ∼ {a}α {c, d} � {aαc, bαd}.
(v-b) C ({a, b}) = {a, b} implies A ∼ {a}α {c, d} ∼ {aαc, bαd}.

We now construct u and w. For any a ∈ ∆, let u(a) = VPS ({a}). By nondegeneracy

(Definition 5), there exist x, y, y′ ∈ ∆ such that y ∈ P(x) and y′ ∈ S(x). Below, we fix such

x, y, y′. Note there exists δ ∈ (0, 1) such that, for all c ∈ ∆, we have y(1 − δ)c ∈ P(x) and

y′(1− δ)c ∈ S(x) (see Lemma S28). By Axioms 3 and 6, we have {x, y(1− δ)c} � {x} and

{x, y′(1− δ)c} � {x} (see Lemma S25). Now, define wP and wS by

wP (c;x, y, δ) =
1

δ
VPS ({x, y(1− δ)c})− 1− δ

δ
VPS ({x, y})− VPS ({c})

wS(c;x, y′, δ) =
1

δ
VPS ({x, y′(1− δ)c})− 1− δ

δ
VPS ({x, y′})− VPS ({c}) .

wP (c;x, y, δ) measures how the utility changes as the reference alternative x is moved slightly

toward c, keeping the ex post choice constant.wS(c;x, y′, δ) is interpreted analogously. The

next two lemmas show some properties of wP and wS, including its linearity and independence

of the specific choice of x, y, y′ ∈ ∆. Proof is in Supplemental Appendix S.C.

Lemma 7. Suppose Axioms 1-6 hold. If y(1− δ)c ∈ P(x) for all c ∈ ∆, then the following

statements hold.

(i) If c ∈ P(x) , then wP (c;x, y, δ) = VPS ({x, c})− VPS ({c}).

(ii) wP (x;x, y, δ) = 0.

(iii) wP (cαc′;x, y, δ) = αwP (c;x, y, δ) + (1− α)wP (c′;x, y, δ) for any α ∈ (0, 1).

(iv) wP (c;x, y, δ′) = wP (c;x, y, δ) for any δ′ ∈ (0, δ).

(v) Suppose b(1 − δ)c ∈ P(a) for all c ∈ ∆. Then wP (c;x, y, δ) = wP (c; a, b, δ) +

wP (a;x, y, δ).

Similarly, we have the following result. The proof is analogous, hence omitted.

Lemma 8. Suppose Axioms 1-6 hold. If y′(1− δ)c ∈ S(x) for all c ∈ ∆, then the following

properties hold.

(i) If c ∈ S(x), then wS(c;x, y′, δ) = VPS ({x, c})− VPS ({c}).

(ii) wS(x;x, y′, δ) = 0.
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(iii) wS(cαc′;x, y′, δ) = αwS(c;x, y′, δ) + (1− α)wS(c′;x, y′, δ) for any α ∈ (0, 1).

(iv) wS(c;x, y′, δ′) = wS(c;x, y′, δ) for all δ′ ∈ (0, δ).

(v) Suppose b′ ∈ S(a′) for all c ∈ ∆. Then wS(c;x, y′, δ) = wS(c; a′, b′, δ) + wS(a′;x, y′, δ).

Now, suppose Axiom 7 holds with some α ∈ (0, 1). Then, a simple algebra shows that

β ≡ 1
α
− 1 > 0 satisfies 1

β
wP (c;x, y, δ) = wS(c;x, y′, δ) ≡ w(c;x, y, y′, δ) for all c ∈ ∆ (see

Lemma S29). We first show that the representation holds for binary menus that include x.

Lemma 9. Suppose Axioms 1-8 hold. Consider x, b ∈ ∆ such that r(x) ≥ r(b) and

VPS ({x, b}) ≥ VPS ({x}). Suppose y(1 − δ)c ∈ P(x) and y′(1 − δ)c ∈ S(x) for all c ∈ ∆.

Then VPS is expressed as

VPS ({x, b}) = max
c∈{x,b}

g

(
c, max
c′∈ϕr({x,b})

w(c′;x, y, y′, δ)

)
and C ({x, b}) coincides with CPS ({x, b}) = arg maxc∈{x,b} g

(
c,maxc′∈ϕr({x,b}) w(c′;x, y, y′, δ)

)
,

where g(c, R) = u(c)−max {R− w(c;x, y, y′, δ), 0}+βmax {w(c;x, y, y′, δ)−R, 0} and ϕr (A) =

arg maxA r.

Proof. Note VPS ({x, y(1− δ)c}) > VPS ({x}) and VPS ({x, y′(1− δ)c}) > VPS ({x}) by

Axioms 3 and 6 (recall Lemma S25). Consider the following exhaustive cases.

Case 1. Suppose b ∈ P(x), so that C ({x, b}) = {b} by definition. Note VPS ({x, b}) >
VPS ({x}) by Lemma S25. By Lemma 7(i)(ii) and b ∈ P(x), we have w(b;x, y, y′, δ) −
w(x;x, y, y′, δ) = 1

β
wP (b;x, y, δ) = 1

β
[VPS ({x, b})− VPS ({b})] > 0. Therefore,

g

(
b, max
c′∈ϕr({x,b})

w(c′;x, y, y′, δ)

)
= u(b) + β [w(b;x, y, y′, δ)− w(x;x, y, y′, δ)]

= VPS ({x, b})

> VPS ({x}) = g

(
x, max

c′∈ϕr({x,b})
w(c′;x, y, y′, δ)

)
.

Thus, the conclusion holds.

Case 2. Suppose b ∈ S(x), so that C ({x, b}) = {b}. By Lemma 8(i)(ii) and b ∈ S(x),

w(b;x, y, y′, δ)− w(x;x, y, y′, δ) = wS(b;x, y′, δ) = VPS ({x, b})− VPS ({b}) < 0. Therefore,

g

(
b, max
c′∈ϕr({x,b})

w(c′;x, y, y′, δ)

)
= u(b) + w(b;x, y, y′, δ)− w(x;x, y, y′, δ)

= VPS ({x, b})

> VPS ({x}) = g

(
x, max

c′∈ϕr({x,b})
w(c′;x, y, y′, δ)

)
.
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Case 3. Suppose b ∈ N1, (x), so that C ({x, b}) = {b}. Letting A′ = {x, y′} (1− δ) {x, b},
Lemma 6(ii) and {x, b} ∼ {b} imply w(b;x, y, y′, δ) − w(x;x, y, y′, δ) = wS(b;x, y′, δ) =
1
δ

[VPS (A′)− (1− δ)VPS ({x, y′})− δVPS ({b})] = 0. Therefore,

g

(
b, max
c′∈ϕr({x,b})

w(c′;x, y, y′, δ)

)
= VPS ({b}) = VPS ({x, b})

> VPS ({x}) = g

(
x, max

c′∈ϕr({x,b})
w(c′;x, y, y′, δ)

)
.

Case 4. Suppose b ∈ N2(x), so that x ∈ C ({x, b}). By Lemma S25, VPS ({x, b}) =

VPS ({x}). Consider first the case where w(b;x, y, y′, δ) > 0. By Axiom 4(iii), 1
δ
VPS ({x, y(1− δ)b})−

1−δ
δ
VPS ({x, y})−VPS ({b}) = wP (b;x, y, δ) > 0 = 1

δ
VPS ({x, y} (1− δ) {b})−1−δ

δ
VPS ({x, y})−

VPS ({b}) , so VPS ({x, y(1− δ)b}) > VPS ({x, y} (1− δ) {b}), which together with Axiom 5(ii-

a) implies C (A) = {y} (1 − δ)C ({x, b}) where A = {x, y} (1 − δ) {x, b}.32 Then, by Axiom

6(i), {x, y(1− δ)x} ∼ A � {x, y(1− δ)b} and the latter relation is strict if and only if

C ({x, b}) = {x}. Therefore,

g

(
b, max
c′∈ϕr({x,b})

w(c′;x, y, y′, δ)

)
= u(b) + β · 1

β
wP (b;x, y, δ)

≤ 1

δ
VPS ({x, y(1− δ)x})− 1− δ

δ
VPS ({x, y})

= VPS ({x}) = VPS ({x, b}) = g

(
x, max

c′∈ϕr({x,b})
w(c′;x, y, y′, δ)

)
where the inequality is strict if and only if C ({x, b}) = {x}. Next, consider the case with

w(b;x, y, y′, δ) ≤ 0. By Axiom 4(iii), 1
δ
VPS ({x, y′(1− δ)b})− 1−δ

δ
VPS ({x, y′})− VPS ({b}) =

wS(b;x, y′, δ) ≤ 0 = 1
δ
VPS ({x, y′} (1− δ) {b}) − 1−δ

δ
VPS ({x, y′}) − VPS ({b}) , so we have

VPS ({x, y′(1− δ)b}) ≤ VPS ({x, y′} (1− δ) {b}), which together with Axiom 5(ii-b) implies

C (A′) = {y′} (1−δ)C ({x, b}) whereA′ = {x, y′} (1−δ) {x, b}. By Axiom 6(i), {x, y′(1− δ)x} ∼
A′ � {x, y′(1− δ)b} and the latter relation is strict if and only if C ({x, b}) = {x}. Therefore,

g

(
b, max
c′∈ϕr({x,b})

w(c′;x, y, y′, δ)

)
= u(b) + wS(b;x, y′, δ)

≤ 1

δ
VPS ({x, y′(1− δ)x})− 1− δ

δ
VPS ({x, y′})

= VPS ({x}) = VPS ({x, b}) = g

(
x, max

c′∈ϕr({x,b})
w(c′;x, y, y′, δ)

)
where the inequality is strict if and only if C ({x, b}) = {x}.

Case 5. Suppose b ∈ I(x) and VPS ({x, b}) > VPS ({x}). Note C ({x, b}) = {b} by Axiom

32To apply Axiom 5(ii), recall C({x, y(1− δ)c}) = {y(1− δ)c} for all c ∈ ∆.
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6, and VPS ({x, y′(1− δ)b}) ≥ VPS (A′) by Lemma 6(iii), where A′ = {x, y′}(1 − δ) {x, b}.
Now, by Lemma 2, VPS ({b}) ≥ VPS ({x, b}). Consider first the case VPS ({b}) = VPS ({x, b}).
Then, VPS ({x, y′(1− δ)b}) ≥ (1 − δ)VPS ({x, y′}) + δVPS ({x, b}) = (1 − δ)VPS ({x, y′}) +

δVPS ({b}) , so w(b;x, y, y′, δ) ≥ 0 = w(x;x, y, y′, δ). Thus, noting ϕr({x, b}) = {x, b},

g

(
b, max
c′∈ϕr({x,b})

w(c′;x, y, y′, δ)

)
= VPS ({b})

= VPS ({x, b}) > VPS ({x}) ≥ g

(
x, max

c′∈ϕr({x,b})
w(c′;x, y, y′, δ)

)
.

Next, consider the case VPS (b) > VPS ({x, b}). By Lemma 6(iii), VPS ({x, y′(1− δ)b}) =

VPS (A′) . Therefore, w(b;x, y, y′, δ) = 1−δ
δ
VPS ({x, y′}) + VPS ({x, b}) − 1−δ

δ
VPS ({x, y′}) −

VPS ({b}) < 0 = w(x;x, y, y′, δ). Thus,

g

(
b, max
c′∈ϕr({x,b})

w(c′;x, y, y′, δ)

)
= u(b) + w(b;x, y, y′, δ)

= VPS ({x, b}) > VPS ({x}) = g

(
x, max

c′∈ϕr({x,b})
w(c′;x, y, y′, δ)

)
.

Case 6. Suppose b ∈ I(x) and VPS ({b}) > VPS ({x, b}) = VPS ({x}). Note x ∈
C({x, b}).33 Then, by Lemma 6(iv), VPS ({x, y′} (1− δ) {x, b}) ≥ VPS ({x, y′(1− δ)b}). There-

fore, we have w(b;x, y, y′, δ) ≤ 1
δ
VPS ({x, y′} (1− δ) {x, b}) − 1−δ

δ
VPS ({x, y′}) − VPS ({b}) <

0 = w(x;x, y, y′, δ), so

g

(
b, max
c′∈ϕr({x,b})

w(c′;x, y, y′, δ)

)
= u(b) + w(b;x, y, y′, δ)

≤ 1

δ
VPS ({x, y′} (1− δ) {x, b})− 1− δ

δ
VPS ({x, y′})

= VPS ({x, b}) = VPS ({x}) = g

(
x, max

c′∈ϕr({x,b})
w(c′;x, y, y′, δ)

)
.

By Lemma 6(iv) the inequality is strict if and only if C ({x, b}) = {x}.
Case 7. Suppose b ∈ I(x) and VPS ({b}) = VPS ({x, b}) = VPS ({x}). If C ({x, b}) = {x},

then by Lemma 6(v-a), we have w(b;x, y, y′, δ) < 1
δ
VPS ({x, y′}(1− δ){x})−1−δ

δ
VPS ({x, y′})−

VPS ({b}) = 0 = w(x;x, y, y′, δ). Therefore,

g

(
b, max
c′∈ϕr({x,b})

w(c′;x, y, y′, δ)

)
= VPS ({b}) + w(b;x, y, y′, δ)

< VPS ({x, b}) = VPS ({x}) = g

(
x, max

c′∈ϕr({x,b})
w(c′;x, y, y′, δ)

)
.

33{b} � {x, b} implies x �w b. Then, Axiom 6 and{x} ∼ {x, b} imply x ∈ C({x, b}).
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If C ({x, b}) = {b}, then Lemma 6(v-a) implies w(b;x, y, y′, δ) > 1
δ
VPS ({x, y′}(1− δ){b}) −

1−δ
δ
VPS ({x, y′})− VPS ({b}) = 0 = w(x;x, y, y′, δ), so

g

(
b, max
c′∈ϕr({x,b})

w(c′;x, y, y′, δ)

)
= VPS ({b})

= VPS ({x, b})

> VPS ({x})− w(b;x, y, y′, δ) = g

(
x, max

c′∈ϕr({x,b})
w(c′;x, y, y′, δ)

)
.

Finally, if C ({x, b}) = {x, b}, then Lemma 6(v-b) implies w(b;x, y, y′, δ) = 1
δ
VPS ({x, y′}(1− δ){x})−

1−δ
δ
VPS ({x, y′})− VPS ({b}) = 0, so the desired representation holds.

Case 8. Suppose b ∈ I(x) and VPS ({x}) = VPS ({x, b}) > VPS ({b}). Note that

Axiom 6 implies C ({x, b}) = {x}.34 By Axiom 4, {x} ∼ {x, b} δ {x} � {b} δ {x}, so

x �w x(1− δ)b by definition. Thus, Axioms 3(i) and 6(i) imply {x, x(1− δ)b, y′(1− δ)b} �
{x, y′(1− δ)b} . Also, C ({x, y′(1− δ)b}) = {y′(1− δ)b} by construction, and Axiom 8 im-

ply x /∈ C ({x, x(1− δ)b, y′(1− δ)b}). Therefore, by Axiom 6(ii), {x(1− δ)b, y′(1− δ)b} �
{x, x(1− δ)b, y′(1− δ)b}. Combining these results, {x, y′}(1−δ){b} � {x, y′(1− δ)b}. Then,

w(b;x, y, y′, δ) < 1
δ
VPS ({x, y′} (1− δ) {b})−1−δ

δ
VPS ({x, y′})−VPS ({b}) = 0 = w(x;x, y, y′, δ),

so

g

(
b, max
c′∈ϕr({x,b})

w(c′;x, y, y′, δ)

)
= VPS ({b}) + w(b;x, y, y′, δ)

< VPS ({x, b})

= VPS ({x}) = g

(
x, max

c′∈ϕr({x,b})
w(c′;x, y, y′, δ)

)
.

Next, we prove that the representation holds for an arbitrary binary menu {a, b}.

Lemma 10. Suppose Axioms 1-8 and nondegeneracy hold. Then there exist continuous and

linear functions u, w and r such that VPS is expressed as

VPS ({a, b}) = max
c∈{a,b}

g

(
c, max
c′∈ϕr({a,b})

w(c′)

)
and C ({a, b}) coincides with CPS ({a, b}) = arg maxc∈{a,b} g

(
c,maxc′∈ϕr({a,b})w(c′)

)
, where

g(c, R) = u(c)−max{R− w(c), 0}+ βmax{w(c)−R, 0} and ϕr(A) = arg maxA r.

Proof. As above, let u(a) = VPS({a}) and let r be the linear function that represents �r.
Take x, y, y′ ∈ ∆ such that y ∈ P(x) and y′ ∈ S(x), which exist by nondegeneracy. Note

that we can take some δ ∈ (0, 1) such that y(1 − δ)c ∈ P(x) and y′(1 − δ)c ∈ S(x) for all

34If b �w x, use Axiom 6(i) and {x, b} � {b}. Otherwise, use Axiom 6(ii) and {x, b} � {b}.
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c ∈ ∆ (see Lemma S28(i)). Now, consider an arbitrary set {a, b}. First, consider the case

a, b ∈ int(∆). Without loss of generality, suppose r(a) ≥ r(b) and VPS ({a, b}) ≥ VPS ({a}).35

Because a ∈ int(∆), there exist ā ∈ ∆ and α ∈ (0, 1) such that a = āαx. Define z = āαy

and z′ = āαy′. By Lemma S28(ii), we have z ∈ P(a) and z′ ∈ S(a). Then, by Lemma S28(i)

there exists δ′ ∈ (0, 1) such that z(1 − δ′)c ∈ P(a) and z′(1 − δ′)c ∈ S(a) for all c ∈ ∆.

Then, by Lemma 9, we have VPS ({a, b}) = maxc∈{a,b} g
(
c,maxc′∈ϕr({a,b})w(c′; a, z, z′, δ′)

)
and C ({a, b}) = arg maxc∈{a,b} g

(
c,maxc′∈ϕr({a,b}) w(c′; a, z, z′, δ′)

)
. Now, let δ∗ = min {δ, δ′}.

Then, by Lemmas 7 and 8, we have w(·;x, y, y′, δ) = w(·;x, y, y′, δ∗), w(·; a, z, z′, δ′) =

w(·; a, z, z′, δ∗) and w(·; a, z, z′, δ∗) = w(·;x, y, y′, δ∗) + k for some constant k. Therefore,

defining w(·) = w(·;x, y, y′, δ) yields the conclusion.36

Next, suppose a ∈ ∆ and b ∈ int(∆). Because aαb ∈ int(∆) for α ∈ (0, 1),

VPS ({aαb, b}) = max
c∈{aαb,b}

g

(
c, max
c′∈ϕr({aαb,b})

w(c′)

)
⇔ αVPS ({a, b}) + (1− α)VPS ({b}) = α max

c∈{a,b}
g

(
c, max
c′∈ϕr({a,b})

w(c′)

)
+ (1− α)u(b).

where the right-hand side follows from linearity (cf. the proof of the necessity of Axiom 4(iii)).

Letting α→ 1 yields the conclusion for VPS. The conclusion for CPS is obtained analogously

using Axiom 5. Proof for the general case with a, b ∈ ∆ is now straightforward.

We now extend the representation to any finite menus.

Lemma 11. Suppose Axioms 1-8 and nondegeneracy hold. Then there exist continuous and

linear functions u, w and r such that, over finite menus, VPS is expressed as

VPS (A) = max
c∈A

g

(
c, max
c′∈ϕr(A)

w(c′)

)
and C(A) coincides with CPS (A) = arg maxc∈A g

(
c,maxc′∈ϕr(A) w(c′)

)
, where g and ϕ are

defined in Lemma 10.

Proof. Take any finite set A. By Eq.(11), Lemma 10, and the property that R > R′ implies

g(c, R) < g(c, R′) at each c ∈ ∆, we have

VPS (A) = min
b∈ϕr(A)

max
a∈A

VPS ({a, b})

= min
b∈ϕr(A)

max
a∈A

max
c∈{a,b}

g

(
c, max
c′∈ϕr({a,b})

w(c′)

)
35If r(a) > r(b), then Lemma 2(i) implies VPS ({a, b}) ≥ VPS ({a}). If r(a) = r(b), then Lemma 2(ii)

implies VPS ({a, b}) ≥ VPS ({a}) or VPS ({a, b}) ≥ VPS ({b}), so the assumption is without loss of generality.
36Note that k is differenced out in g, and that (x, y, y′, δ) does not depend on (a, b).
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= min
b∈ϕr(A)

max
a∈A

max

{
g

(
a, max

c′∈ϕr({a,b})
w(c′)

)
, g

(
b, max
c′∈ϕr({a,b})

w(c′)

)}
= min

b∈ϕr(A)
max
a∈A

g

(
a, max

c′∈ϕr({a,b})
w(c′)

)
= max

a∈A
g

(
a, max

c′∈ϕr(A)
w(c′)

)
.

where the fourth equality holds because b ∈ ϕr(A) implies maxa∈A g
(
b,maxc′∈ϕr({a,b})w(c′)

)
≤

g (b, w(b)) ≤ maxa∈A g
(
a,maxc′∈ϕr({a,b}) w(c′)

)
.

To prove the result on C, we first introduce some lemmas. Lemmas 12 and 14 establish

Lemma 15, which then establishes Lemma 11.

Lemma 12. Suppose Axioms 1-8 hold. If r(a) = r(b) and w(a) > w(b), then a �w b.

Proof. Consider the following exhaustive cases. (Recall that, by Lemma 10, the representa-

tion holds for binary menus.)

Case 1. Suppose u(a) + w(a) ≤ u(b) + w(b). Then VPS ({a, b}) = u(b) + w(b)− w(a) <

VPS ({b}), so a �w b.
Case 2. Suppose u(a) +w(a) > u(b) +w(b) and u(a) < u(b). Then VPS ({a, b}) = u(a) <

VPS ({b}), so a �w b.
Case 3. Suppose u(a) +w(a) > u(b) +w(b) and u(a) = u(b). Then VPS ({a, b}) = u(a) =

VPS ({b}) and C ({a, b}) = {a}, so a �w b.
Case 4. Suppose u(a) + w(a) > u(b) + w(b) and u(a) > u(b). Then VPS ({a}) =

VPS ({a, b}) > VPS ({b}). This, together with a ∼r b, implies a �w b.

Lemma 13. Suppose Axioms 1-8 hold. If y ∈ P(x), then r(x) > r(y) and w(x) < w(y).

Proof. By assumption, we have r(x) > r(y) and g(y, w(x)) = VPS({x, y}) > u(y) =

g(y, w(y)), the latter of which implies w(x) < w(y).

Lemma 14. Suppose Axioms 1-8 and nondegeneracy hold. Then, for any a, b ∈ ∆, r(a) =

r(b) and a 6= b imply w(a) 6= w(b).

Proof. By Lemma 13, r(x) > r(y) and w(x) < w(y) for some x, y ∈ ∆. If r(a) = r(b) and

w(a) = w(b) for some a 6= b, then the indifference curves for r and w are parallel straight

lines, which contradicts r(x) > r(y) and w(x) < w(y).

Lemma 15. Suppose Axioms 1-8 and nondegeneracy hold. Then, for any A ∈ A and any

b ∈ arg maxc′∈ϕr(A) w(c′), we have b �r a and b �w a for all a ∈ A.

Proof. Take any a ∈ A \ {b}. Because b ∈ ϕr(A), b �r a. If a /∈ ϕr(A), then b �r a, so

Axiom 3(i) implies b �w a. If a ∈ ϕr(A), then r(a) = r(b) and w(a) ≤ w(b) by definition.

By Lemma 14, w(a) < w(b). Thus, b �w a by Lemma 12.
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Proof of Lemma 11, Continued. We show C(A) = arg maxc∈A g
(
c,maxc′∈ϕr(A) w(c′)

)
by

showing each inclusion.

Step 1. Take a ∈ arg maxc∈A g
(
c,maxc′∈ϕr(A) w(c′)

)
, b ∈ arg maxc′∈ϕr(A) w(c′), and d ∈

C (A). By the first half of Lemma 11 and maxc′∈ϕr(A) w(c′) = maxc′∈ϕr({a,b,d}) w(c′) = w(b),

we have {a, b, d} ∼ A. Also, Lemma 15 implies b �r a′ and b �w a′ for all a′ ∈ A. Thus,

by Axiom 8, d ∈ C ({a, b, d}). Also, by the representation and Lemma 10, we have {a, b} ∼
{a, b, d} and a ∈ C ({a, b}). By Axiom 6(i), we have a ∈ C ({a, b, d}) or b ∈ C ({a, b, d}), so

Axiom 8 implies a ∈ C ({a, b, d}). Thus, again by Axiom 8, a ∈ C (A).

Step 2. Suppose d ∈ C (A). Take a ∈ arg maxc∈A g
(
c,maxc′∈ϕr(A) w(c′)

)
and b ∈

arg maxc′∈ϕr(A) w(c′). By Lemma 15, we have b �r a′ and b �w a′ for all a′ ∈ A. Also, by Step

1, we have a ∈ C ({a, b, d}). Thus, Axiom 8 implies d ∈ C ({a, b, d}). By Axiom 6(i), {b, d} ∼
{a, b, d}. By the representation and the definition of a and b, we have maxc∈{b,d} g (c, w(b)) =

maxc∈{a,b,d} g (c, w(b)) = maxc∈A g (c, w(b)) . By Axiom 8, we have d ∈ C ({b, d}), so Lemma

10 implies d ∈ arg maxc∈{b,d} g (c, w(b)). Thus d ∈ arg maxc∈A g
(
c,maxc′∈ϕr(A) w(c′)

)
.

To complete the proof of the sufficiency part of Theorem 1, we use the following result.

Lemma 16. Suppose Axioms 1-8 hold. Suppose that for any A ∈ A, there exists a finite

subset A′ of A such that (i) maxA r = maxA′ r and (ii) for any finite A′′ such that A′ ⊂ A′′ ⊂
A, A′′ ∼ A′. Then we have A ∼ A′.

Proof. Note that there exists a sequence of finite subsets {An}∞n=1 ofA such that dH(An, A)→
0 as n → ∞ by Lemma 0 in GP. By (ii), A′ ∼ An ∪ A′ for all n, so A′ % A ∪ A′ = A by

Axiom 2(i). To show the opposite relation, note that since A is compact, for every ε > 0,

there are finite x1, · · · , xn ∈ A such that A ⊂ ∪ni=1N(xi, ε). If (A′ ∪N(xi, ε))∩A � A for all

i = 1, · · · , n, then iteratively applying Lemma 2(ii) yields A = ∪ni=1{(A′∪N(xi, ε))∩A} � A,

a contradiction. Therefore, A % (A′ ∪ N(x′, ε)) ∩ A for some x′ ∈ A. Thus, we can take a

sequence {xn}∞n=1 in A such that A % (A′ ∪ N(xn,
1
n
)) ∩ A for all n = 1, 2, · · · . Since A is

compact, there exists a subsequence {xnk
}∞k=1 such that xnk

→ x∗ ∈ A. Then letting k →∞
yields A % A′ ∪ {x∗} ∼ A′ by Axiom 2(i).

Proof of Theorem 1 (Sufficiency), Continued.

Take any closed set A ∈ A, and take a∗ ∈ arg maxc∈A g
(
c,maxc′∈ϕr(A) w(c′)

)
and b∗ ∈

arg maxc′∈ϕr(A) w(c′). By construction, max{a∗,b∗} r = maxA r. By Lemma 11, {a∗, b∗} ∼ A′′

for any finiteA′′ such that {a∗, b∗} ⊂ A′′ ⊂ A. Therefore, by Lemma 16, we haveA ∼ {a∗, b∗}.
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Thus, defining

VPS (A) ≡ VPS ({a∗, b∗}) = max
c∈{a∗,b∗}

g

(
c, max
c′∈ϕr({a∗,b∗})

w(c′)

)
= max

c∈A
g

(
c, max
c′∈ϕr(A)

w(c′)

)
,

VPS represents � on A. Also, following the argument for the proof of Lemma 11, we obtain

C (A) = CPS (A) = arg maxc∈A g
(
c,maxc′∈ϕr(A)w(c′)

)
.

Finally, by construction, β = 1
α
− 1 if the DM is α-sensitive to shame. Thus, the DM is

shame-averse (α > 1
2
) if and only if β < 1, shame-neutral (α = 1

2
) if and only if β = 1 and

shame-loving (α < 1
2
) if and only if β > 1.

A.2 Proof of Theorem 2

We first introduce two lemmas. Lemma 17 is used to prove Lemma 18, which in turn helps

us establish r(a) > r(b)⇔ a �r b.

Lemma 17. Suppose the data are generated by a weakly nondegenerate PS preference. Then,

the following sets are nonempty for all a ∈ int(∆):

P1(a) = {c ∈ ∆ : r(a) > r(c) and g(a, w(a)) < g(c, w(a))} (12)

P2(a) = {c ∈ ∆ : r(a) > r(c) and w(a) < w(c)} (13)

Proof. Take ā, b̄ ∈ ∆ such that ā �∗ b̄. Then, there exist A 3 b̄ and c 6= ā such that A∪{ā} �
A, ā /∈ C (A ∪ {ā}), and c ∈ C (A ∪ {ā}). The first two conditions imply ϕr(A ∪ {ā}) = {ā}
and w(ā) = maxy∈ϕr(A∪{ā}) w(y) < maxy∈ϕr(A) w(y) (see Lemma S30). Thus, there is d ∈ A
such that w(d) = maxy∈ϕr(A) w(y) > w(ā) and r(d) < r(ā), implying d ∈ P2(ā). We

additionally have c ∈ C (A ∪ {ā}), so g(c, w(ā)) > g(ā, w(ā)), hence c ∈ P1(ā).

Now, take any a ∈ int(∆). There exist α ∈ (0, 1) and e ∈ ∆ such that a = āαe. By

the linearity of u, w, and r, we have r(a) > max {r(cαe), r(dαe)}, g(cαe, w(a)) > g(a, w(a)),

and w(a) < w(dαe). Therefore, cαe ∈ P1 (a) and dαe ∈ P2 (a).

c ∈ P1(a) is an alternative which is below a in the descriptive norm ranking r but which

is a choice preferred to a. d ∈ P2(a) is an alternatives which is below a in the descriptive

norm ranking but above a in the prescriptive norm ranking w. Therefore, if d ∈ A ∩ P2(a)

sets the reference point at a menu A and a sets the reference point at A ∪ {a}, then the

latter reference point is lower than the former. Moreover, if c ∈ A ∩ P1(a), then a is not

chosen from A ∪ {a}. Such c, d are key to establishing r(a) > r(b) ⇒ a �∗ b for “generic”

cases. Lemma 18 formalizes the idea. See also the graphical illustration in Figure S1 and

discussions in Appendix S.D.
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Lemma 18. Suppose the data are generated by a weakly nondegenerate PS preference. Then,

for any a, b ∈ ∆, a �∗ b implies r(a) > r(b). Moreover, if a ∈ int(∆), then r(a) > r(b)

implies a �∗ b.

Proof. Suppose a �∗ b, so that we have A 3 b such that A ∪ {a} � A and a /∈ C (A ∪ {a}).
Then, we must have ϕr(A∪ {a}) = {a} (see Lemma S30), hence r(a) > r(b). Next, suppose

a ∈ int(∆) and r(a) > r(b). By Lemma 17, there exist c ∈ P1(a) and d ∈ P2(a). Note that

d ∈ P2 (a) implies dαa ∈ P2 (a) for all α ∈ (0, 1). Therefore, we can assume without loss of

generality that r(a) > r(d) > max {r(b), r(c)}. Then, defining G(A,R) = maxc∈A g(c, R),

VPS ({a, b, c, d}) = G

(
{a, b, c, d} , max

y∈ϕr({a,b,c,d})
w(y)

)
= G ({b, c, d} , w(a))

> G ({b, c, d} , w(d)) = VPS ({b, c, d})

where the inequality follows from G(A, ·) being strictly decreasing, and the second equality

follows from g(a, w(a)) < g(c, w(a)), which also implies a /∈ C ({a, b, c, d}). Thus, a �∗ b.

Proof of Theorem 2, Continued.

(i) Suppose first r(a) > r(b). Take some c ∈ int(∆) such that r(a) > r(c) > r(b).37 By

Lemma 18, c �∗ b. Also, if c �∗ a, then r(c) > r(a) by Lemma 18, a contradiction.

Therefore, c �∗ a, hence a �r b. Next, suppose a �r b, so that we have c �∗ a and c �∗ b
for some c ∈ int(∆). By Lemma 18, r(c) > r(b). Also, if r(c) > r(a), then c �∗ a by Lemma

18, a contradiction. Thus, r(a) ≥ r(c) > r(b).

(ii) By inspection, a �w b implies w(a) > w(b) (see Lemma S31). The converse can be

established by following the proof of Lemma 12.38

A.3 Other Proofs

A.3.1 Proof of Proposition 1

It is easy to show that (ii) implies (i), so we only prove that (i) implies (ii). Let VPS and V ′PS
denote the PS representations of � using (u,w, r, β) and (u′, w′, r′, β′), respectively. Since

VPS is unique up to positive affine transformation, u′(x) = V ′PS({x}) = θVPS({x}) + γu =

θu(x) + γu for some θ > 0 and γu ∈ R. Now, by nondegeneracy and Lemma S28, there exist

x, y ∈ ∆ and δ ∈ (0, 1) such that y(1− δ)z ∈ P(x) for all z ∈ ∆. By the representation, we

37Take c′ = aαb for some α ∈ (0, 1). If c′ ∈ int(∆), let c = c′. Otherwise, take some d ∈ int(∆) and let
c = c′βd where β < 1 is sufficiently close to 1.

38Note that the proof depends on the representation and not on any axiom.
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have

1

δ
VPS({x, y(1− δ)z})− 1− δ

δ
VPS({x, y}) =

1

δ
{u(y(1− δ)z) + β[w(y(1− δ)z)− w(x)]}

− 1− δ
δ
{u(y) + β[w(y)− w(x)]}

= u(z) + βw(z)− βw(x).

Therefore, for any z ∈ ∆,

u′(z) + β[w′(z)− w′(x)] =
1

δ
V ′PS ({x, y(1− δ)z})− 1− δ

δ
V ′PS ({x, y})

=
1

δ
[θVPS ({x, y(1− δ)z}) + γu]−

1− δ
δ

[θVPS ({x, y}) + γu]

= θ

[
1

δ
VPS ({x, y(1− δ)z})− 1− δ

δ
VPS ({x, y})

]
+ γu

= θ {u(z) + β[w(z)− w(x)]}+ γu.

Since u′(z) = θu(z) + γu, we have w′(z) = θw(z) − θw(x) + w′(x) ≡ θw(z) + γw. Next, by

Theorem 2, both r and r′ represent �r, so Lemma 1 implies r′ = θrr+γr for some θr > 0 and

γr ∈ R. Finally, by Axiom 7, there exists a unique α ∈ (0, 1) such that, for any a, b, c, d ∈ ∆

with c ∈ P(a) ∩ P(b) and d ∈ S(a) ∩ S(b), we have {a, c}α{eb,d} ∼ {b, c}α{ea,d}, where

{eb,d} ∼ {b, d} and {ea,d} ∼ {a, d}. By the representation, we have

VPS
(
{a, c}α

{
eb,d
})

= αVPS ({a, c}) + (1− α)VPS
({
eb,d
})

= αVPS ({a, c}) + (1− α)VPS ({b, d})

= α{u(c) + β[w(c)− w(a)]}+ (1− α){u(d) + w(d)− w(b)}

and similarly VPS
(
{b, c}α

{
ea,d
})

= α{u(c)+β[w(c)−w(b)]}+(1−α){u(d)+w(d)−w(a)}.
Since these values are equal for any a, b ∈ ∆, we must have 1 − α − αβ = 0, i.e., α = 1

1+β
.

Because the two representations must represent the same (�, C), we have β = β′.

A.3.2 Proof of Proposition 2.

Equivalence of (i) and (ii) follows from αi = 1
1+βi

(see the proof of Proposition 1). To

show the equivalence of (ii) and (iii), note that if DM i is αi-sensitive to shame, then the

representation implies

αi =
V i
PS ({a, d})− V i

PS ({b, d})
V i
PS ({a, c})− V i

PS ({b, c}) + V i
PS ({a, d})− V i

PS ({b, d})
.
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Then

{b, c}α
{
ea,di

}
�i {a, c}α

{
eb,di

}
⇔ αV i

PS ({a, c}) + (1− α)V i
PS ({b, d}) ≤ αV i

PS ({b, c}) + (1− α)V i
PS ({a, d})

⇔ α ≤ αi.

Therefore, α1 > (≥)α2 if and only if {b, c}α
{
ea,d2

}
�2 {a, c}α

{
eb,d2

}
implies {b, c}α

{
ea,d1

}
�1

(�1) {a, c}α
{
eb,d1

}
.
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S.B Other Predictions from the Simple Model

In Section 2.1, we present a simple PS model of prosocial behavior and show its insightfulness.

In this section, we discuss additional implications of the model, such as conformative versus

pride-seeking behavior, and boomerang effects.

Recall that x = 1 denotes engaging in prosocial behavior, and x = 0 denotes non-

engagement. Private and social payoffs are in conflict: u(0) = ū > 0 = u(1) and w(0) = 0 <

w̄ = w(1), with βw̄ < ū < w̄. At menu {0, 1}, the DM chooses an action by comparing the ex

post utility of action 0, U(0; {0, 1}) = ū−w(ϕr({0, 1})), with that of action 1, U(1; {0, 1}) =

β [w̄ − w(ϕr({0, 1}))]. We compare decisions in the benchmark case r(0) > r(1) (prosocial

behavior is perceived as uncommon) with those in the post-intervention case r′(0) < r′(1)

(prosocial behavior is perceived as common).

Conformity and pride seeking. The DM conforms to the reference alternative both in

the benchmark case (x = ϕr({0, 1}) = 0) and post-intervention case (x = ϕr′({0, 1}) = 1).

By contrast, if we modify the benchmark assumption so that βw̄ > ū, then the DM engages

in prosocial behavior under both scenarios. In the modified benchmark, the DM deviates

from the reference to seek pride. Thus, our model can produce conformative or pride-seeking

behavior depending on β. Typical empirical findings suggest β is small (see footnote 14);

still, in some contexts, individuals may seek to perform better than a natural reference point.

Boomerang effect. In a field experiment on electricity consumption, Schultz et al. (2007)

find that providing descriptive information on neighbors’ electricity usage led to desired elec-

tricity saving by high-consuming households but increased consumption by low-consuming

households. To explain the latter result (which Schultz et al. (2007) call a “boomerang ef-

fect”) without complicating the model, let x = 0 and x = 1 denote high consumption and

low consumption of electricity, respectively, and suppose that the low-consuming households

originally perceive norms (w, r′) but the intervention updates the perceptions to (w, r). By

the analysis in Section 2.1, the low-consuming households originally choose x = 1 but the

intervention causes them to switch to x = 0. Thus, our model can explain the boomerang

effect by a shift of the perceived descriptive norm toward higher consumption.

The purpose of the above example is to illustrate the importance of considering the per-

ceived norms of individuals when introducing a policy, rather than develop a more thorough

model. For example, the reduction in the electricity consumption by high-consuming house-

holds can be explained by the opposite shift in the perceived descriptive norm. Instead of

developing a model which accommodates both types of households (possibly requiring more
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than two options), we note that even the direction of a policy effect, as well as its magnitude,

crucially depends on what norms the households perceive prior to the intervention.

S.C Supplemental Proofs

S.C.1 Supplemental Proofs for Theorem 1 (Sufficiency Part)

S.C.1.1 Supplemental Results for Lemma 1

Lemma S19. Suppose Axioms 4 and 5 hold. Then, for any a, b, c ∈ ∆ and α ∈ (0, 1), a �∗ b
implies aαc �∗ bαc.

Proof. By definition, we have A ∪ {a} � A and a /∈ C (A ∪ {a}) for some A 3 b. Then,

mixing each term with {c} with mixing rate α yields the result.

Lemma S20. Suppose Axioms 1-3 hold. Then, the following statements hold.

(i) If a �∗ b, then for any c ∈ ∆, there exists α∗ ∈ (0, 1) such that aαc �∗ b for all

α ∈ (α∗, 1).

(ii) If b �∗ c, then for any a ∈ ∆, there exists β∗ ∈ (0, 1) such that b �∗ cβa for all

β ∈ (β∗, 1).

Proof. (i) By a �∗ b, we have A ∪ {a} � A and a /∈ C (A ∪ {a}) for some A 3 b. By Axiom

2(i), there exists α1 ∈ (0, 1) such that A∪{aαc} � A for all α ∈ (α1, 1). By Axiom 3(iii-b), we

have α2 ∈ (0, 1) such that aαc /∈ C (A ∪ {aαc}) for all α ∈ (α2, 1). Thus, α∗ ≡ max {α1, α2}
has the desired property.

(ii) By b �∗ c, we have B ∪{b} � B and b /∈ C (B ∪ {b}) for some B 3 c. By Axioms 2(i)

and 3(iii), there exist β1, β2 ∈ (0, 1) such that [Bβ{a}]∪{b} � Bβ{a} for all β ∈ (β1, 1) and

b /∈ C ([Bβ{a}] ∪ {b}) for all β ∈ (β2, 1).39 Thus, b �∗ cβa for all β > β∗ ≡ max{β1, β2}.

Lemma S21. Suppose Axioms 1-5 hold. If a �∗ b holds, then there exists c ∈ int(∆) such

that c �∗ a and c �∗ b.

Proof. Suppose a �∗ b. By Lemma S19, we have a �∗ a.5b �∗ b. If a.5b ∈ int(∆), then

Axiom 3(i) implies c = a.5b has the desired property. Otherwise, take any α ∈ (0, 1) and

d ∈ int(∆), and let c = (a.5b)αd ∈ int(∆). Then, by Lemma S20, we have a �∗ c �∗ b for α

sufficiently close to one.

39To show that the former property holds for all sufficiently large β < 1, note first that Axioms 2(i)
and 3(iii-a) ensure B ∪ {b} � B̃ � B where B̃ = B̃(γ) = [B ∪ {b}] γB for some γ ∈ (0, 1). (Otherwise,
ΓL = {γ ∈ [0, 1] : B � B̃(γ)} and ΓU = {γ ∈ [0, 1] : B̃(γ) � B ∪ {b}} are nonempty closed sets such that
ΓL ∪ ΓU = [0, 1], so B̃(γ) � B̃(γ) for γ ∈ ΓL ∩ ΓU , a contradiction.) Then, by Axioms 2(i) and 3(iii-a), for
all sufficiently large β < 1, we must have [Bβ{a}] ∪ {b} � B̃ � Bβ{a}.
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Lemma S22. If Axioms 1-5 hold, then �r is transitive.40

Proof. Suppose a �r b �r c. By Lemma S21, we have some d ∈ int(∆) such that d �∗ a and

d �∗ b. If d �∗ c, then c �r b, contradicting Axiom 3(i). Therefore, d �∗ c, hence a �r c.

S.C.1.2 Supplemental Results for Lemma 2

Below, we impose Axioms 1-5, so �r admits a linear representation r (Lemma 1).

Lemma S23. Suppose Axioms 1-5 hold. Then, for any finite A ∈ A, there exists a∗ ∈ A
such that a∗ �r a and a∗ �w a for all a ∈ A.

Proof. Because �w is complete by definition and transitive on ϕr(A) by Axiom 3(ii), there

exists a∗ which maximizes �w on ϕr(A). By a∗ ∈ ϕr(A), we must have a∗ �r a for all a ∈ A.

Also, for any a ∈ A \ ϕr(A), we have a∗ �r a, so Axiom 3(i) implies a∗ �w a. Thus, a∗ �r a
and a∗ �w a for all a ∈ A.

Lemma S24. Suppose that Axioms 1-6 hold and that A and B are finite.

(i) If A � A ∪B, there is b ∈ B \ A such that b �r a or b �w a for all a ∈ A.

(ii) If A∪B � A and C (A ∪B)∩A 6= ∅, there is b ∈ B \A such that b �r a for all a ∈ A.

Proof. Note that by the hypotheses, A 6⊃ B holds for (i)(ii).

(i) By Lemma S23, there exists a∗ ∈ A such that a∗ �r a and a∗ �w a for all a ∈ A. To

prove the contrapositive, suppose that for any b ∈ B \A, there exists a ∈ A such that a �r b
and a �w b. By transitivity and Axiom 3(i)(ii), a∗ �r c and a∗ �w c for all c ∈ A∪B. Thus,

Axiom 6(i) yields A ∪B � A.

(ii) If the conclusion is false, then we have a∗ ∈ A such that a∗ �r c for all c ∈ A∪B and

a∗ �w c for all c ∈ A. If a∗ �w b for all b ∈ B, then by Axiom 6(i), it is impossible to have

A ∪ B � A and C (A ∪B) ∩ A 6= ∅ simultaneously. If b �w a∗ for some b ∈ B, then Axiom

6(ii) yields the same conclusion.

S.C.1.3 Supplemental Results for Lemma 4.

Lemma S25. Suppose Axioms 3(i) and 6(i) hold. Then, b ∈ P(a) ∪ S(a) ∪ N1(a) implies

{a, b} � {a}, and b ∈ N2(a) implies {a, b} ∼ {a}.

Proof. If a �r b, Axiom 3(i) implies a �w b. Then, Axiom 6(i) yields the conclusion.

Lemma S26. Suppose Axioms 1-6 hold. If {c, d} ∈ BS, then {c} � {c, d} or {d} � {c, d}.
40In fact, Axioms 3(i)(ii) are enough to show the transitivity of �r, with a longer proof.
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Proof. The conclusion trivially holds if c = d, so we assume c 6= d. Without loss of generality,

let c �r d. If d ∈ S(c) ∪ N1(c), then {d} � {c, d} by definition. If d ∈ I(c), then Lemma

2(ii) implies either {c} � {c, d} or {d} � {c, d}.

Lemma S27. Suppose Axioms 1-6 hold. If A ∈ AS ∪ AN , then A ∼ {e} for some e ∈ ∆.

Proof. If A ∈ AN , then the conclusion follows from Lemma S25. Suppose A ∈ AS. Note

that iteratively applying Lemma 2 yields A � {a} for some a ∈ A.41 If A ∼ {a} for some

a ∈ A, the conclusion holds. Next, suppose {a′} � A � {a} for some a, a′ ∈ A. Then,

because {a} , {a′} , A ∈ AS, we have V S ({a′}) > V S (A) > V S ({a}). By linearity, there

exists α ∈ (0, 1) such that V S ({a′αa}) = αV S ({a′}) + (1 − α)V S ({a}) = V S (A). Thus,

{a′αa} ∼ A. Finally, to see that A � {a} for all a ∈ A does not occur, recall we can write

A =
∑MA

m=1 αm {a1m, a2m} where {a1m, a2m} ∈ BS and
∑MA

m=1 αm = 1. By Lemma S26, there

exist (em)MA

m=1, with em ∈ {a1m, a2m} for each m, such that {em} � {a1m, a2m}. By Axiom 4,

we have {
∑MA

m=1 αmem} � A.

S.C.1.4 Supplemental Results for Theorem 1 (Sufficiency), Continued

Proof of Lemma 6. (i) By Axiom 5(i), C ({a, b}α {c, d}) = {bαd}. Also, by the linearity of

r and Axiom 3(i), we have r(aαc) > r(z), hence aαc �w z, for all z ∈ A \ {aαc}. Therefore,

Axiom 6(i) implies A ∼ {aαc, bαd}.
(ii) The same argument as (i) yields the result.

(iii) Let VPS be a function that represents � over finite menus in A. By Eq.(11),

there exists z ∈ A such that VPS (A) = minz′∈ϕr(A) VPS ({z, z′}). If z = aαc, then by

aαc ∈ ϕr(A) and Axioms 3(i) and 6(i), we have VPS (A) ≤ VPS ({aαc}) < αVPS ({a, b})+(1−
α)VPS ({c, d}) = VPS (A), a contradiction. If z = aαd, then VPS (A) ≤ VPS ({a}α {c, d}) <
VPS (A), a contradiction. A similar contradiction results if z = bαc. Thus, VPS (A) =

minz′∈ϕr(A) VPS ({bαd, z′}) ≤ VPS ({aαc, bαd}) . Now, suppose VPS (b) > VPS ({a, b}). Note

we have VPS (A) = VPS ({bαd, aαc}) or VPS (A) = VPS ({bαd, bαc}). In the latter case,

VPS (A) = αVPS ({b})+(1−α)VPS ({c, d}) > VPS (A) , a contradiction. Thus, A ∼ {aαc, bαd}.
(iv) Note we have ϕr(A) = {aαc, bαc}. Also, by Axiom 4(iii), we have {bαc} � {aαc, bαc},

so aαc �w bαc. By Axiom 3(i), aαc �w z for all z ∈ A. Also, by Axiom 5(i), C (A) =

C ({a, b})α {d}. Therefore, Axiom 6(i) yields the desired conclusion.

(v) Let C ({a, b}) = {a}. We first prove the last two relations in (v-a). By Axiom 5(i),

C (A) = {aαd} and C ({a, b}α {c}) = {aαc}. Also, Axiom 4 implies {bαc} ∼ {aαc, bαc} ,
41Denote A =

{
a1, · · · , a|A|

}
where {a1} � {a2} � · · · �

{
a|A|

}
. If a|A|−1 �r a|A|, then Lemma 2(i)

implies
{
a|A|−1, a|A|

}
�
{
a|A|−1

}
�
{
a|A|

}
. If a|A| �r a|A|−1, then Lemma 2(i) implies

{
a|A|−1, a|A|

}
�{

a|A|
}

. If a|A|−1 ∼r a|A|, then Lemma 2(ii) implies
{
a|A|−1, a|A|

}
�
{
a|A|

}
. Repeating similar arguments

yields A � {a|A|}.
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so aαc �w bαc. Also, we have aαc �r aαd, bαd, so Axiom 3(i) implies aαc �r z and

aαc �w z for all z ∈ A. By Axiom 6(i), A ∼ {aαc, aαd} � {aαc, bαd}. Next, to show the

first relation in (v-a), note that bαc �r z for all z ∈ A, bαc �w aαd (by Axiom 3(i)), and

aαc �w bαc. Thus, applying Axiom 6(ii) to Ã = {bαc, aαd} and B̃ = {aαc, bαd}, we obtain

{bαc, aαd} � Ã ∪ B̃ = A. Finally, to show (v-b), suppose C ({a, b}) = {a, b}. Then we have

C (A) = {aαd, bαd}, and aαc, bαc �r z and aαc, bαc �w z for all z ∈ A. Thus, applying

Axiom 6(i) to Ã = {aαc, bαd} and B̃ = {bαc, aαd} yields A ∼ {aαc, bαd} and applying it to

Ã = {aαc, aαd} and B̃ = {bαc, bαd} yields A ∼ {aαc, aαd}.

Lemma S28. Suppose Axioms 1-5 hold, y ∈ P(x), and y′ ∈ S(x).

(i) There exists δ ∈ (0, 1) such that y(1− δ)c ∈ P(x) and y′(1− δ)c ∈ S(x) for all c ∈ ∆.

(ii) y(1− δ)c ∈ P(x(1− δ)c) and y′(1− δ)c ∈ S(x(1− δ)c) for all c ∈ ∆ and all δ ∈ (0, 1).

Proof. (i) By definition, {x, y} � {y} and C ({x, y}) = {y}. Because the restriction of �
to singleton sets is continuous, and because ∆ is compact, there exists δ1 ∈ (0, 1) such that

{x, y(1− δ)c} � {y(1− δ)c} for all c ∈ ∆ and δ ∈ (0, δ1).42 Also, by Axiom 3(iii-b) and

compactness, we have some δ2 ∈ (0, 1) such that C ({x, y(1− δ)c}) = {y(1− δ)c} for all

c ∈ ∆ and δ ∈ (0, δ2). Therefore, by taking δP = min {δ1, δ2}, the first half of the statement

holds for all δ < δP . An analogous argument yields δS such that the second half of the

statement holds for all δ < δS. Thus, δ < min
{
δP , δS

}
satisfies the desired property.

(ii) The conclusion is an immediate consequence of Axioms 4(iii) and 5(iii).

Proof of Lemma 7. (i) Because y, c ∈ P(x), VPS ({x, y(1− δ)c}) = VPS ({x, y} (1− δ) {x, c})
by Lemma 6(i). Therefore, using {x, y} , {x, c} ∈ BP ,

wP (c;x, y, δ) =
1

δ
[(1− δ)VPS ({x, y}) + δVPS ({x, c})− (1− δ)VPS ({x, y})− δVPS ({c})]

= VPS ({x, c})− VPS ({c}) .

(ii) The result follows from VPS ({x, y(1− δ)x}) = (1− δ)VPS ({x, y}) + δVPS ({x}).
(iii) By Lemma 6(i), VPS ({x, [y(1− δ)c]α [y(1− δ)c′]}) = VPS ({x, y(1− δ)c}α {x, y(1− δ)c′}) .

Therefore,

wP (cαc′;x, y, δ) =
1

δ
VPS ({x, [y(1− δ)c]α [y(1− δ)c′]})− 1− δ

δ
VPS ({x, y})− VPS ({cαc′})

=
α

δ
VPS ({x, y(1− δ)c}) +

1− α
δ

VPS ({x, y(1− δ)c′})

− 1− δ
δ

VPS ({x, y})− αVPS ({c})− (1− α)VPS ({c′})

42Let A = {x, y} .5 {y}. By Axiom 4, we have {x, y} � A � {y}. By Axiom 2(i) and the continuity of VPS

on singletons, we have {x, y(1− δ)c} � A and A � {y(1− δ)c} for all sufficiently small δ.
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=αwP (c;x, y, δ) + (1− α)wP (c′;x, y, δ).

(iv) Let δ′ ∈ (0, δ). Note that y(1− δ′)c = y δ−δ
′

δ
[y(1− δ)c]. Because y, y(1− δ)c ∈ P(x),

Lemma 6(i) implies VPS
({
x, y δ−δ

′

δ
[y(1− δ)c]

})
= VPS

(
{x, y} δ−δ′

δ
{x, y(1− δ)c}

)
. There-

fore, VPS ({x, y(1− δ)c}) = δ
δ′
VPS ({x, y(1− δ′)c})− δ−δ′

δ′
VPS ({x, y}). Substituting this into

the definition, we have

wP (c;x, y, δ) =
1

δ′
VPS ({x, y(1− δ′)c})− δ − δ′

δδ′
VPS ({x, y})− 1− δ

δ
VPS ({x, y})− VPS ({c})

=wP (c;x, y, δ′).

(v) Our goal is to show wP (c;x, y, δ) = wP (c; a, b, δ) + wP (a;x, y, δ) or, equivalently,

1

δ
VPS ({x, y(1− δ)c}) =

1

δ
VPS ({a, b(1− δ)c})− 1− δ

δ
VPS ({a, b})

− VPS ({a}) +
1

δ
VPS ({x, y(1− δ)a}) .

By (ii), we have VPS ({a}) = 1
δ
VPS ({a, b(1− δ)a})− 1−δ

δ
VPS ({a, b}). Substituting this into

the above expression, our goal is to show

VPS ({x, y(1− δ)c} .5 {a, b(1− δ)a}) = VPS ({a, b(1− δ)c} .5 {x, y(1− δ)a}) .

Because y(1− δ)c, y(1− δ)a ∈ P(x) and b(1− δ)a, b(1− δ)c ∈ P(a), Lemma 6(i) implies that

both sides of this equation equal VPS ({x.5a, [(1− δ)(y + b)] .5 [δ(a+ c)]}) .

Lemma S29. Suppose Axioms 1-7 hold, y(1 − δ)c ∈ P(x), and y′(1 − δ)c ∈ S(x) for all

c ∈ ∆. Then, β ≡ 1
α
−1 > 0, where α ∈ (0, 1) is as defined in Axiom 7, satisfies the following

condition: wP (c;x, y, δ) = βwS(c;x, y′, δ) for all c ∈ ∆.

Proof. We have

δ [wP (c;x, y, δ)− βwS (c;x, y′, δ)]

= VPS ({x, y(1− δ)c})− (1− δ)VPS ({x, y})− δVPS ({c})

− β [VPS ({x, y′(1− δ)c})− (1− δ)VPS ({x, y′})− δVPS ({c})]

=
1

α
[αVPS ({x, y(1− δ)c}) + (1− α)VPS ({x(1− δ)c, y′(1− δ)c})]

− 1

α
[αVPS ({x(1− δ)c, y(1− δ)c}) + (1− α)VPS ({x, y′(1− δ)c})]

=
1

α

[
αVPS ({x, y(1− δ)c}) + (1− α)VPS

({
ex(1−δ)c,y′(1−δ)c

})]
− 1

α

[
αVPS ({x(1− δ)c, y(1− δ)c}) + (1− α)VPS

({
ex,y

′(1−δ)c
})]
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= 0

where the last equality holds because y(1 − δ)c ∈ P(x) ∩ P(x(1 − δ)c) and y′(1 − δ)c ∈
S(x) ∩ S(x(1 − δ)c) hold by Lemma S28, so that Axiom 7 applies. Thus, wP (c;x, y, δ) =

βwS (c;x, y′, δ) where β > 0.

S.C.2 Supplemental Proofs for Theorem 2

Lemma S30. Suppose the data are generated by a PS preference. If A ∪ {a} � A and a /∈
C (A ∪ {a}), then ϕr(A ∪ {a}) = {a} and w(a) = maxc′∈ϕr(A∪{a}) w(c′) < maxc′∈ϕr(A) w(c′).

Proof. SupposeA∪{a} � A and a /∈ C (A ∪ {a}). If maxc′∈ϕr(A∪{a}) w(c′) ≥ maxc′∈ϕr(A) w(c′),

then VPS(A ∪ {a}) = G
(
A ∪ {a} ,maxc′∈ϕr(A∪{a}) w(c′)

)
= G

(
A,maxc′∈ϕr(A∪{a}) w(c′)

)
≤

G
(
A,maxc′∈ϕr(A)w(c′)

)
= VPS(A) where the second equality follows from a /∈ C (A ∪ {a}).

This is a contradiction. Thus, maxc′∈ϕr(A∪{a}) w(c′) < maxc′∈ϕr(A) w(c′), and we must have

ϕr(A ∪ {a}) = {a} and maxc′∈ϕr(A∪{a}) w(c′) = w(a).43

Lemma S31. Suppose the data are generated by a weakly nondegenerate PS preference. If

a �w b, then r(a) ≥ r(b) and w(a) > w(b).

Proof. Consider the following exhaustive cases.

Case 1. If {b} � {a, b}, then g(b, w(b)) = u(b) > maxc∈{a,b} g
(
c,maxc′∈ϕr({a,b}) w(c′)

)
≥

g
(
b,maxc′∈ϕr({a,b}) w(c′)

)
, so maxc′∈ϕr({a,b}) w(c′) > w(b), yielding the conclusion.

Case 2. If {b} ∼ {a, b} and C({a, b}) = {a}, then g(b, w(b)) = u(b) = g
(
a,maxc′∈ϕr({a,b}) w(c′)

)
>

g
(
b,maxc′∈ϕr({a,b}) w(c′)

)
, so the conclusion holds as in Case 1.

Case 3. If a ∼r b and {a} ∼ {a, b} � {b}, then we have a ∈ C({a, b}) (otherwise, a �r b, a

contradiction). Thus, u(a) = g
(
a,maxc′∈{a,b}w(c′)

)
. This in turn implies maxc′∈{a,b}w(c′) =

w(a) ≥ w(b). By weak nondegeneracy, the straight indifference curves of r and w cross each

other (see Lemma 17). Because r(a) = r(b) and a 6= b, we have w(a) > w(b).

S.C.3 Proof of Theorem 1 (Necessity Part)

Below, we show that a nondegenerate preference that has a PS representation satisfies each

axiom. Proofs of Axiom 1 and Axiom 2(iii) are straightforward and omitted.

To proceed to other axioms, note first that the functions g(c, R) = u(c)−max {R− w(c), 0}+
βmax {w(c)−R, 0} and G(A,R) = maxc∈A g(c, R) are strictly decreasing and continuous in

R and that G is continuous in A.

43Note that for any A,B ∈ A, ϕr (A ∪B) ∈ {ϕr (A) , ϕr (B) , ϕr (A) ∪ ϕr (B)} .
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Axiom 2(i). Suppose A � Bn for all n and Bn → B. Then, because maxc′∈ϕr(B)w(c′) ≥
limn→∞maxc′∈ϕr(Bn) w(c′), we have

VPS(A) = G

(
A, max

c′∈ϕr(A)
w(c′)

)
≥ lim

n→∞
G

(
Bn, max

c′∈ϕr(Bn)
w(c′)

)
= G

(
B, lim

n→∞
max

c′∈ϕr(Bn)
w(c′)

)
≥ G

(
B, max

c′∈ϕr(B)
w(c′)

)
= VPS (B) .

Axiom 2(ii). Suppose A � B � C. Note

VPS (AαC) = G

(
AαC, max

c′∈ϕr(AαC)
w(c′)

)
= G

(
AαC, α max

c′∈ϕr(A)
w(c′) + (1− α) max

c′∈ϕr(C)
w(c′)

)
.

By the continuity of G, VPS(AαC) ≈ VPS(C) < VPS(B) for sufficiently small α ∈ (0, 1).

Axiom 3(i). If a �r b, then Theorem 2 implies r(a) > r(b). Thus, Theorem 2 implies

b �r a, and Lemma S31 implies b �w a. Similarly, if a �w b, then Lemma S31 implies

r(a) ≥ r(b) and w(a) > w(b), so we cannot have b �r a or b �w a.

Axiom 3(ii). Suppose a �∗ b �∗ c. By definition, there exist A 3 b and B 3 c such that

A ∪ {a} � A, a /∈ C(A ∪ {a}), B ∪ {b} � B, and b /∈ C(B ∪ {b}). Now, let C = A ∪ B. By

Lemma S30, we have ϕr(C ∪{a}) = {a} and w(a) < maxc′∈ϕr(A) w(c′) = maxc′∈ϕr(C) w(c′).44

The representation implies a /∈ arg maxd∈C∪{a} g (d, w(a)) = C(C ∪ {a}) and C ∪ {a} � C.

Thus, a �∗ c. Next, if a ∼r b ∼r c, Theorem 2 implies [a �w b]∧ [b �w c]⇔ [w(a) ≥ w(b)]∧
[w(b) ≥ w(c)]⇒ w(a) ≥ w(c)⇔ a �w c.

Axiom 3(iii-a). Suppose AαnC � B for all n and αn → α. Because

lim
n→∞

max
c′∈ϕr(AαnC)

w(c′) = lim
n→∞

[
αn max

c′∈ϕr(A)
w(c′) + (1− αn) max

c′∈ϕr(C)
w(c′)

]
= max

c′∈ϕr(AαC)
w(c′),

we have AαC � B as follows:

VPS (AαC) = G

(
AαC, max

c′∈ϕr(AαC)
w(c′)

)
= lim

n→∞
G

(
AαnC, max

c′∈ϕr(AαnC)
w(c′)

)
= lim

n→∞
VPS (AαnC) ≥ VPS(B).

Axiom 3(iii-b). Suppose a∗ ∈ A is such that a∗ �r a for all a ∈ A \ {a∗}. Take

44For any a′ ∈ ϕr(A) and b′ ∈ ϕr(B), we have r(a) > r(a′) ≥ r(b) > r(b′).
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any (An)n and any (an)n such that An → A, an ∈ C(An), and an → a. By Theorem

2, r(a∗) > r(a) for all a ∈ A \ {a∗}, so limn→∞maxc′∈ϕr(An) w(c′) = w(a∗). By continuity,

g
(
c,maxc′∈ϕr(An) w(c′)

)
→ g (c, w(a∗)) for all c. By an ∈ C(An), we have g

(
an,maxc′∈ϕr(An)w(c′)

)
=

G(An,maxc′∈ϕr(An) w(c′)), so letting n → ∞ yields g (a, w(a∗)) = G(A,w(a∗)). Thus, a ∈
C(A).

Axiom 3(iv). By Lemma 18, aαc �∗ bαc⇒ r(a) > r(b)⇒ a �∗ b.

To prove some of the remaining axioms, we use the following result.

Lemma S32. Suppose the choice data are generated by a PS preference. (i) If b ∈ P(a),

then w(a) < w(b). (ii) If b ∈ S(a), then w(a) > w(b). (iii) If b ∈ N1(a), then w(a) = w(b).

Proof. (i) By the representation and the definition of P(a), g(b, w(a)) > u(b) = g(b, w(b)),

so w(a) < w(b). (ii) If b ∈ S(a), we have g(b, w(a)) < g(b, w(b)), so w(a) > w(b). (iii) If

b ∈ N1(a), we have g(b, w(a)) = g(b, w(b)), so w(a) = w(b).

Proof of Theorem 1 (Necessity), Continued.

Axiom 4(i). We consider the cases where mixed menus are binary; mixtures with a

singleton are considered in Axiom 4(iii). Suppose b ∈ P(a) ∪ N1(a), d ∈ P(c) ∪ N1(c), and

f ∈ P(e)∪N1(e). By Lemma S32, r(a) > r(b), w(a) ≤ w(b), r(e) > r(f), and w(e) ≤ w(f).

Therefore, for any α ∈ (0, 1),

VPS({a, b}α {e, f})

= max
x∈{a,b}α{e,f}

[u(x) + β (w(x)− w(aαe))]

= α max
x∈{a,b}

[u(x) + β (w(x)− w(a))] + (1− α) max
x∈{e,f}

[u(x) + β (w(x)− w(e)))]

= αVPS({a, b}) + (1− α)VPS({e, f}).

Similarly, VPS({c, d}α {e, f}) = αVPS({c, d})+(1−α)VPS({e, f}). Thus, {a, b} � (�) {c, d}
implies {a, b}α {e, f} � (�) {c, d}α {e, f}.

Axiom 4(ii). Again, consider the cases where mixed menus are binary. Take any

{a, b} , {e, f} ∈ BS such that a 6= b and e 6= f . By Lemma S32, we can assume without

loss of generality that r(a) ≥ r(b), w(a) ≥ w(b), r(e) ≥ r(f), and w(e) ≥ w(f). Then,

VPS({a, b}α {e, f}) = max
x∈{a,b}α{e,f}

[u(x) + w(x)− w(aαe)]

= αVPS({a, b}) + (1− α)VPS({e, f}).
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Therefore, the conclusion of Axiom 4(ii) holds.

Axiom 4(iii). Note that for any x ∈ A, we have

g

(
xαc, max

c′∈ϕr(Aα{c})
w(c′)

)
= αu(x) + (1− α)u(c)− αmax

{
max

c′∈ϕr(A)
w(c′)− w(x), 0

}
+ αβmax

{
w(x)− max

c′∈ϕr(A)
w(c′), 0

}
= αg

(
x, max

c′∈ϕr(A)
w(c′)

)
+ (1− α)u(c).

Thus, the conclusion follows from

VPS (Aα {c}) = max
x∈A

g

(
xαc, max

c′∈ϕr(Aα{c})
w(c′)

)
= αmax

x∈A
g

(
x, max

c′∈ϕr(A)
w(c′)

)
+ (1− α)u(c) = αVPS (A) + (1− α)VPS ({c}) .

Axiom 5(i). Consider first the case where b ∈ P(a) ∪ N1(a) and d ∈ P(c) ∪ N1(c).

Following the proof of Axiom 4(i),

C({a, b}α {c, d})

= arg max
x∈{a,b}α{c,d}

[u(x) + β (w(x)− w(aαc))]

= α arg max
x∈{a,b}

[u(x) + β (w(x)− w(a))] + (1− α) arg max
x∈{c,d}

[u(x) + β (w(x)− w(c))]

= C({a, b})αC({c, d}).

Proof for the case b ∈ S(a)∪N1(a)∪ I(a) and d ∈ S(c)∪N1(c)∪ I(a) is analogous: letting

w(a) ≥ w(b) and w(c) ≥ w(d) without loss of generality,

C({a, b}α {c, d}) = arg max
x∈{a,b}α{c,d}

[u(x) + w(x)− w(aαc)] = C({a, b})αC({c, d}).

Before proving Axiom 5(ii), we note that Axiom 5(iii) can be shown by following the

proof of Axiom 4(iii). Thus, the proof of Axiom 5(iii) is omitted.

Axiom 5(ii). For (ii-a), suppose A = {a, b}α {a, c}, b ∈ N2(a), c ∈ P(a), {a, bαc} �
{b}α {a, c}, and C ({a, bαc}) = {bαc}. By Axiom 5(iii), we have C({b}α{a, c}) = {bαc}.
By the representation, g(bαc, w(a)) = VPS({a, bαc}) ≥ VPS({b}α {a, c}) = g(bαc, w(bαa)).

Therefore, we have w(bαa) ≥ w(a), so w(b) ≥ w(a). Because r(a) > r(b), r(c) and w(a) ≤
w(b), w(c), following the proof of Axiom 5(i) yields C (A) = C ({a, b})αC ({a, c}). Proof of

(ii-b) is analogous, once we note that the assumptions imply g(bαc, w(bαa)) ≥ g(bαc, w(a))
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so that we have w(a) ≥ w(b), as well as r(a) > r(b), r(c) and w(a) > w(c).

Axiom 6(i). Suppose there exists a∗ ∈ A such that a∗ �r c and a∗ �w c for all c ∈
A ∪ B. Then, by Theorem 2, maxy∈ϕr(A∪B) w(y) = maxy∈ϕr(A) w(y) = w(a∗). Therefore,

VPS(A ∪ B) = maxx∈A∪B g (x,w(a∗)) ≥ maxx∈A g (x,w(a∗)) = VPS(A) and the inequality is

strict if and only if C(A ∪B) ∩ A = arg max
x∈A∪B

g (x,w(a∗)) ∩ A = ∅.

Axiom 6(ii). Suppose there exists a∗ ∈ A such that a∗ �r c for all c ∈ A∪B and a∗ �w a
for all a ∈ A, and there exists b∗ ∈ B such that b∗ �w a∗. By Lemma S31 and Theorem

2, r(b∗) = r(a∗) ≥ r(b) for all b ∈ B and w(b∗) > w(a∗). Without loss of generality, let

b∗ be a maximizer of �w on ϕr(B). Then, by Theorem 2, maxy∈ϕr(A∪B) w(y) = w(b∗) >

w(a∗) = maxy∈ϕr(A) w(y). Therefore, if there exists c ∈ C(A ∪ B) ∩ A, then VPS(A ∪ B) =

g (c, w(b∗)) < g (c, w(a∗)) ≤ VPS(A).

Axiom 7. Take any a, b, c, d ∈ ∆ such that c ∈ P(a) ∩ P(b) and d ∈ S(a) ∩ S(b). Then,

VPS({a, c}) + βVPS({b, d}) = u(c) + β (w(c)− w(a)) + β [u(d) + w(d)− w(b)]

= u(c) + β (w(c)− w(b)) + β [u(d) + w(d)− w(a)]

= VPS({b, c}) + βVPS({a, d}).

Therefore, by letting α = 1
1+β
∈ (0, 1), and using {eb,d} ∼ {b, d} and {ea,d} ∼ {a, d},

VPS
(
{a, c}α

{
eb,d
})

= αVPS ({a, c}) + (1− α)VPS
({
eb,d
})

= αVPS ({b, c}) + (1− α)VPS
({
ea,d
})

= VPS
(
{b, c}α

{
ea,d
})
.

Axiom 8. Suppose there exists a∗ ∈ A∩B such that a∗ �r c and a∗ �w c for all c ∈ A∪B.

By Theorem 2, maxy∈ϕr(A) w(y) = maxy∈ϕr(B) w(y) = w(a∗). Now, suppose a, b ∈ A ∩ B,

a ∈ C (A), and b ∈ C (B). By the representation, g (a, w(a∗)) = g (b, w(a∗)) ≥ g (c, w(a∗)) for

all c ∈ A ∪B. Therefore, a ∈ C (B).

S.C.4 Other Proofs

S.C.4.1 Proof of Claim 1

(i) By assumption, there exist A ∈ A and a ∈ ∆ such that A∪{a} � A and a /∈ C(A∪{a}).
By Lemma S30, ϕr(A ∪ {a}) = {a} and w(a) < maxc′∈ϕr(A) w(c′). Thus, for some b ∈ A, we

have r(a) > r(b) and w(a) < w(b). (ii) Without loss of generality, assume {a} � {b} for all

b ∈ A. By assumption, maxy∈ϕr(A) w(y) = w(c) > w(a) for some c ∈ A (otherwise, we would

have A � {a}). Therefore, we have u(a) ≥ u(c), w(a) < w(c), and r(a) ≤ r(c). If we further

had u(a) = u(c), then A � {c} ∼ {a}, a contradiction. Thus, u(a) > u(c).
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S.C.4.2 Proof of Claim 2

(i) If {a, b} � {b} and C({a, b}) = {b}, then we must have maxy∈ϕ({a,b}) w(y) = w(a) < w(b),

so the DM feels pride by choosing b at {a, b}. Conversely, pride immediately implies {a, b} �
{b}, and {a, b} � {a} follows from the representation and a /∈ C({a, b}). (ii) Similar to (i).

S.D Graphical Illustrations of Nondegeneracy and �r
In this section, we provide graphical illustrations of the nondegeneracy concepts and the

elicitation of the reference ranking, with dim(Z) = 3. Figure S1 illustrates the concepts of

nondegeneracy and weak nondegeneracy, providing an example to distinguish the two. It

also shows why, in Definition 1, a �∗ b should be defined using a general menu A 3 b and

not just A = {b}, and it presents a graphical illustration of Theorem 2. Figure S2 then

demonstrates how Definition 1(ii-b) helps establish a �r b when we cannot establish the

relation via condition (ii-a) (i.e., a �∗ b), which occurs when a is on the boundary of ∆.

Figure S1a illustrates nondegeneracy, which requires that there exist x, y, y′ ∈ ∆ such

that y ∈ P(x) and y′ ∈ S(x). For P(x) to be nonempty, we must have some y ∈ ∆ such

that r(x) > r(y), w(x) < w(y), and g(x,w(x)) < g(y, w(x)). The first two conditions ensure

that the reference point at {x, y} is lower than that at {y}, and adding the third condition

ensures that x is not chosen from {x, y}. Similarly, for S(x) to be nonempty, we must have

y′ ∈ ∆ such that r(x) > r(y′), w(x) > w(y′), and g(x,w(x)) < g(y′, w(x)), ensuring that the

reference point at {x, y′} is higher than that at {y′} and that x is not chosen from {x, y′}.
Figure S1b provides an example in which the nondegeneracy property is violated. To

see this, note that for any ā, y ∈ ∆ such that r(ā) > r(y) and w(ā) < w(y), we have

g(ā, w(ā)) > g(y, w(ā)), so P(ā) is empty. In this case, the reference-lowering alternative ā

is also the chosen one, so observing {ā, y} � {y} does not allow us to tell if the larger menu

is preferred because ā lowers the reference point or because ā is the preferred choice.

However, the preference illustrated in Figure S1b satisfies the weak nondegeneracy axiom.

To see this, note that (i) the reference point at
{
ā, b̄, c, d

}
, i.e., w(ā), is lower than the

reference point at
{
b̄, c, d

}
, i.e., w(d), and (ii) C(

{
b̄, c, d

}
) = C(

{
ā, b̄, c, d

}
) = {c}. In this

case, ā makes the larger menu more desirable even though it is not chosen there, by setting

the reference point lower than the reference point at
{
b̄, c, d

}
. Therefore, we have ā �∗ b̄.

This example shows why we cannot confine Definition 1(i) to A =
{
b̄
}

: Even if r(ā) > r(b̄),

we may have ā ∈ C(
{
ā, b̄
}

) (ā is chosen) or w(ā) ≥ w(b̄) (ā sets a weakly higher reference

point), preventing us from concluding ā �∗ b̄ with A =
{
b̄
}

. Thus, to conclude ā �∗ b̄, we
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may need a larger menu A that contains a “choice fixer” c ∈ P1(ā) and a “higher reference

setter” d ∈ P2(ā). The figure also graphically illustrates Theorem 2, in particular that we

observe ā �∗ b̄ whenever r(ā) > r(b̄), as long as P1(ā) and P2(ā) are nonempty, which is a

quite weak condition.

The nondegeneracy condition is also a quite weak condition in general, because it holds

generically if dim(Z) ≥ 4. To see the intuition, note that P(x) is characterized by three linear

inequalities (involving r, w, and u+ βw) and that S(x) is also characterized by three linear

inequalities (involving r, w, and u+w), as the above discussion of Figure S1a suggests. Thus,

as long as the coefficient matrices (of dimension 3× (dim(Z)− 1), because the probabilities

must sum to one) have a rank of three, which holds generically, they are nonempty.

Figure S2 illustrates how we can elicit ā �r b̄ when ā cannot satisfy ā �∗ b̄ even though

data are generated by a PS preference with r(ā) > r(b̄). Figure S2a depicts the indifference

curves of the same PS preference as in Figure S1b. However, because ā is on the boundary

of ∆, P2(ā) is empty, and we cannot establish ā �∗ b̄ with any A 3 b̄. In words, when ā is a

unique reference alternative at A ∪ {ā} (i.e., r(ā) > r(y) for all y ∈ A), the reference point

is necessarily higher than that at A, so A∪ {ā} � A does not occur as long as ā is unchosen

there.

However, we can still conclude r(ā) > r(b̄) by using some c ∈ int(∆) such that r(ā) >

r(c) > r(b̄), as Figure S2b demonstrates. First, we can elicit c �∗ b̄ by Lemma 18 (note also

that P1(c) and P2(c) are nonempty). Moreover, we cannot have c �∗ ā, as c cannot set a

reference point at A whenever ā ∈ A. Thus, we can conclude ā �r b̄ via Definition 1(ii-b).
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Figure S1: Nondegeneracy and Weak Nondegeneracy

(a) Nondegeneracy
(b) Weak Nondegeneracy

Notes: Panel (a) presents an example of a PS preference that satisfies nondegeneracy. Panel (b) presents an example of a PS preference that satisfies

weak nondegeneracy but not nondegeneracy, because P(ā) is empty for all ā ∈ ∆. Each dashed or solid straight line represents an indifference curve

of u, w, u+w, u+βw or r, with an arrow indicating the increasing direction of the utility function. The bold solid line kinked at x in Panel (a) (at ā

in Panel (b)) denotes the indifference curve of the function g(·, w(x)) (g(·, w(ā))) defined in Lemma 10. In Panel (a), the black and red shaded areas

depict P(x) and S(x), respectively, defined in Eq. (4) and (5) in Section 3.1. In Panel (b), the black and red shaded area depicts P1(ā) and P2(ā),

respectively, defined in Lemma 17. See the text in Appendix S.D for details.
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Figure S2: Reference Elicitation on the Boundary

(a) Non-existence of d ∈ P2(ā) (b) Mediating alternative c ∈ int(∆)

Notes: Panel (a) presents an example of alternatives ā, b̄ ∈ ∆ such that r(ā) > r(b̄) but ā �∗ b̄. Panel (b) illustrates how we can establish ā �r b̄ via

Definition 1(ii-b) using a mediating alternative c ∈ int(∆). Each dashed or solid straight line represents an indifference curve of u, w, u+ w, u+ βw

or r, with an arrow indicating the increasing direction of the utility function. The bold solid line kinked at ā in Panel (a) (at c in Panel (b)) denotes

the indifference curve of the function g(·, w(ā)) (g(·, w(c))) defined in Lemma 10. In Panel (a), the black shaded area depicts P1(ā) defined in Lemma

17. In Panel (b), the black and red shaded areas depict P1(c) and P2(c), respectively. See the text in Appendix S.D for details.
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