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Abstract

Social norms are an important determinant of behavior, but the behavioral and
welfare effects of norms are not well understood. We propose and axiomatize a decision-
theoretic model in which a reference point is formed by the decision maker’s perceptions
of which actions are admired (prescriptive norms) and which are prevalent (descriptive
norms), and utility depends on the pride of exceeding the reference point or the shame
of falling below it. The model is simple, yet provides a unified explanation for previous
empirical findings, and is useful for behavioral and welfare analysis of norm-evoking

policies with a revealed preference approach.
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1 Introduction

Social norms are receiving increasing attention as a key determinant of behavior in various
contexts. Norms can take effect through simple interventions such as making decisions or
outcomes publicly observableEl or providing social informationﬂ As a result, policymakers
have become increasingly interested in social norms as a cost-effective policy lever to induce
desired behavioral changes.

Despite the growing interest, the behavioral and welfare effects of such policies are not
well understood. Norm-evoking policies may produce desired behavioral outcomes in some
cases, but they may fail to do so or even backfire in othersﬂ The lack of understanding is
partly due to the lack of theoretical foundations on how norms affect the decision maker’s
payoffs and how they are revealed from choice data. This gap also makes it unclear how
revealed preferences are useful for welfare analysis in norm-conscious decision-making.

This paper presents a novel decision-theoretic model to describe the behavior of a decision
maker (DM) who is concerned with social norms. We consider a two-stage choice problem
(Gul and Pesendorfer||2001; [Noor and Takeoka |2015) adapted to decisions under social im-
age concerns (e.g. Dillenberger and Sadowski 2012; |Saito [2015; Evren and Minardi 2017
Hashidate|2021)). The DM first privately chooses a menu (i.e., choice set) and then publicly

chooses an alternative from the menu. This setting naturally expresses the behavioral effect
of norms by the discrepancy between preferences in the private (norm-free) and public (norm-

conscious) stages, and is also suitable to study the avoidance of choice opportunities (e.g.,

Dana et al. [2006) or the welfare effects of norms. We axiomatize a utility representation

called a pride-shame representation, in which utility depends on an endogenously derived
reference point (cf. Ok et al.||2015; |Lleras et al.|[2019; Kibris et al.|[2023).

In our model, the reference point is determined by an interaction of two types of subjective

norms, referred to as descriptive norms and prescriptive norms. Economists typically em-
phasize descriptive norms, which express the DM’s perception of what behavior is prevalent
or common, i.e., what others choose to do. In contrast, social psychologists also emphasize
prescriptive norms (e.g., (Cialdini et al. 1991} Bicchieri 2005; Bicchieri and Dimant| 2022)),

'Researchers have studied the effects of publicity on educational investment (Bursztyn and Jensen!2015),
career choice (Bursztyn et al.|[2017), tax compliance (Perez-Truglia and Troiano [2018)), charitable giving
(Butera et al. 2022, and see also DellaVigna et al.|2012)), blood donations (Lacetera and Macis|2010), and
voting (Gerber et al.|2008). See [Bursztyn and Jensen| (2017) for a review.

?Information about other individuals’ behavior or normative opinions affects charitable donation (Frey
and Meier|2004), tax compliance (Frey and Torgler[2007; [Hallsworth et al.[2017), energy conservation (Schultz
et al.|[2007; /Allcott|[2011; /Allcott and Rogers 2014), and female labor participation (Bursztyn et al.2020).

SPublicity of decisions may increase or decrease target behavior (Bursztyn and Jensen/2015). Providing
information about the behavior of others may lead to the avoidance of a choice opportunity
or an undesirable choice (Schultz et al.|2007).




which express the DM’s perception of what behavior is approved of or admired, i.e., what
others think one should dof_r] Although economists have also studied prescriptive norms (e.g.,
Akerlof and Kranton/2000)), they have not extensively studied how the two notions of norms
interact. We show, by an application to prosocial behavior, that interactions between these
norms can explain a variety of previously documented behavioral patterns. Crucially, the
two types of norms are the subjective beliefs of the DM and are allowed to be biased.

An essential determinant of behavior is social emotions, such as pride and shame, which
arise from comparing one’s own behavior with the typical behavior of others as reference
behavior. To illustrate, consider a DM who expects a donation solicitor to arrive at her
home shortly (DellaVigna et al. [2012)). The DM’s satisfaction with donating an amount,
say $10, depends on how she perceives the behavior of others. If she believes that her
neighbors donate $0, then she gains a positive sense of pride from the $10 donation because
her behavior is perceived as normatively superior to that of her neighbors. The degree of
pride depends on the perceived desirability of each action: if donating $10 is considered much
(barely) more desirable than donating $0, then the payoff gain from pride is large (small). In
contrast, if she believes that her neighbors donate $100, she suffers a negative sense of shame
from donating $10 because her behavior is considered normatively inferior. The payoff loss
from shame, in turn, depends on the perceived admirability of each action. As this example
shows, descriptive norms determine which behavior the DM focuses on as reference behavior
(donating $0 or $100) to which to compare her own choice (donating $10), and prescriptive
norms determine the payoff from the comparison. The norms then affect the DM’s behavior.
Suppose she initially plans to donate $10, but then thinks that her neighbors are donating
$100. If a solicitor is already at her door, she may increase her planned donation to avoid
shame. Alternatively, if the solicitor has not yet arrived, she may leave the house, thereby
avoiding the opportunity to donate.

Using a simple example of prosocial behavior, we illustrate that our model provides
useful insights for the behavioral and welfare effects of norms. First, it clarifies how the
choice of an action depends on descriptive and prescriptive norms, and when policies such as
providing social information or making decisions public may be (in)effective. For example,
if information about others’ behavior (normative opinions) mainly affects the descriptive
(prescriptive) norm, then changing this perceived norm is the main mechanism behind the
effect of providing information. The effectiveness of the policy then depends on how sensitive
the perceived norms are to the policy and how the DM evaluates the resulting pride or shame.

Second, the two-stage modeling allows us to study choice avoidance and the welfare effects

of policies directly. For example, if a DM strictly prefers a menu {$0} over another menu

4Prescriptive norms are also known as injunctive norms (see Section [5| for terminology).



{$0, %10}, this indicates her avoidance of an opportunity to donate $10, and a negative welfare
effect of making the choice public. Without using the preference over the menus, we might
draw a false welfare conclusion: e.g., if we only observe that the DM chooses a $10 donation
from the menu {$0,$10}, we might mistakenly infer that adding the option to donate $10 is
beneficial, even if she chooses it simply to avoid the shame from not donating )] In addition,
our model illustrates how policies to influence perceived norms exert differential impacts
on the participation in a donation opportunity and on the donation decision conditional on
participation. For example, it can explain the laboratory findings of Klinowski (2021) that
informing individuals about others’ high level of donation after participation increases the
amount donated, but doing so before participation discourages participation.

Third, our model can account for behavioral regularities that are well documented in
psychology but have received limited attention in economics. For example, it can rationalize
previous findings that providing information about descriptive or prescriptive norms is more
effective at inducing prosocial behavior when they are aligned than when they are misaligned
(Cialdini|2003), and that the descriptive norm has a greater influence in the latter case (e.g.,
Bicchieri and Xiao[2009). An individual is more likely to make a donation when others say
that one should donate and they do donate, than when others say one should donate but
they do not. Intuitively, when both norms point to prosocial behavior, failure to follow them
generates shame. In contrast, if the prescriptive norm points to prosocial behavior but the
descriptive norm points to the opposite, acting prosocially generates pride. If avoiding shame
is a stronger motivator than seeking pride, which is empirically supported (DellaVigna et al.
2017; Butera et al.|2022)), then aligned norms are more likely to induce prosocial behavior.

The first step toward axiomatically deriving our representation is to characterize the DM’s
subjective reference. Our approach is similar in spirit to that of Masatlioglu et al.| (2012)
and Kibris et al| (2023), who elicit the DM’s consideration and reference, respectively, by
observing a “choice reversal,” whereby removing an unchosen alternative from a menu affects
the choice from the menu. Instead of requiring a choice reversal, we exploit observations
such that removing an unchosen alternative affects the preference over menus. Suppose
we observe that the DM donates $10 whether or not she has the option to decline donation
(C({$0,%10}) = C({$10}) = {$10}), but that she strictly prefers to donate with the option to
decline ({$0,$10} > {$10}). This suggests that the option to decline donation improves the
DM'’s utility from donating by generating pride, which then implies that $0 is the reference
choice at the menu {$0,$10}. We generalize this observation to elicit a subjective reference
set, i.e., the set of reference alternatives, at each menu.

The second key step is to describe how preferences for smaller or larger menus emerge

SThis situation is similar to the situation of “product market traps” (Bursztyn et al.2025).



depending on the reference set. Consider first a DM who perceives that her neighbors do
not donate. Then, answering the door to meet a solicitor will never hurt ({$0,$10} > {$0}),
because she can decline the donation without shame, or she can even feel pride by choosing
to donate. Lemma [2(i), derived from our axioms, formalizes this idea: the DM will exhibit
a preference for larger menus (cf. Evren and Minardi|2017) when the additional alternatives
do not enter the reference set. Next, consider a DM who privately does not want to donate
({80} = {$10}). Suppose she notices that some neighbors are donating $10, so $10 enters
her reference set when she faces the menu {$0,$10}. Then, the option to donate $10 will
not improve the DM’s feelings about not donating, because of the shame of falling below
her neighbors’ standard. She then prefers to avoid the donation option ({$0} > {$0,$10}).
Lemma [(ii) characterizes such a preference: the DM will exhibit a preference for smaller
menus (cf. Gul and Pesendorfer| 2001; Dillenberger and Sadowski| [2012)) when the extra
alternatives enter the reference set.

Our contribution is to propose a simple, tractable, and theoretically and axiomatically
founded model of norm-conscious decisions that facilitates applied analysis. (1) Our model
of norms using a descriptive norm and a prescriptive norm is simple, yet it can explain
various previous empirical findings. It also clarifies mechanisms behind policy effects, facili-
tating policy analysis. (2) The model is tractable in that it does not require an equilibrium
assumption; instead, it is directly disciplined by observed choices. Thus, the DM’s perceived
norms are allowed to be biased and are revealed from choice data. (3) The model is closely
aligned to the social psychological theory of norms and it also has an axiomatic foundation.
The transparent link between choice data and utility representation facilitates a revealed
preference approach to studying behavioral and welfare effects of norms and norm-evoking
policies, e.g., to infer who feel pride and who feel shame in a given situation (cf. [Toussaert
2018)), and welfare impacts of public recognition programs (Butera et al.|2022).

The paper is organized as follows. In Section [2] we illustrate our model and its im-
plications by a simple example of prosocial behavior. Section |3 presents our axioms and
the representation result. Section [4| discusses how our model can be useful for empirical
research. Section [f reviews the literature. Section [6] concludes. Proofs and additional results

are presented in the Appendices.



2 Illustrative Model

Denote a typical menu of alternatives by A. With a simplified version of our utility repre-

sentation, the preference > over menus is represented by

Vps(A) = max U(z; A), (1)

€A

and the ex-post choice from each menu coincides with Cpg(A) = arg max,ea U(z; A), where

U(z; A), the utility of choosing alternative x from A, is expressed as

U(r; A) = @ —max {w(¢,(A)) —w(x),0} +8 max{w(z) —w(p,(4)),0}.  (2)

- -~
intrinsic “shame” >0 “pride” >0

InEq. ), 3 >0, ¢.(A) = argmaxye4 r(a), which is assumed to be a singleton for illustrative
purposes, and u, w, and r are expected utility (EU) functionsﬂ The function u represents the
DM'’s intrinsic utility function, which describes her private preference ranking.m The term
w(pr(A)) represents a social reference point, which consists of two distinct components.
First, the function r is called the descriptive norm function, which expresses the DM’s
perception of the prevalence of each alternative. ¢,.(A) is then interpreted as the alternative
that the DM thinks is typically chosen by other people in her society. Second, the function
w is called the prescriptive norm function, which expresses the DM’s perception of the
admirability of each alternative. Together, w(p,(A)) represents the normative desirability
of the socially prevalent choice, as perceived by the DM. We allow the DM to have biased
beliefs about others’ behavior or normative opinions.

The last two terms in Eq. denote the utility from social emotions. If the DM
chooses an alternative x that is normatively inferior to the reference alternative ¢,.(A),
she feels shame, which reduces her utility by w(,(A)) — w(x). Conversely, if she chooses
x that is normatively superior to ¢,.(A), she feels pride, which increases her utility by
B w(x) —w(pr(A))]. This modeling is closely aligned to the social psychological theory
of norms (see Section . Also, by letting 5 # 1, we allow the DM to care about a downward

6The EU may not well suit some contexts of social decision-making under uncertainty (e.g., Saito|2013).
However, it remains appropriate in contexts where the social consequences of actions involve probabilistic
uncertainty and can be meaningfully aggregated through expected values. For example, offering aid to a
politically corrupt and impoverished country may probabilistically result in either alleviating suffering among
the poor or entrenching the authority of a corrupt regime. Such cases are well suited to expected utility
analysis (Rabin|[1995)). While we acknowledge the limitations of the EU in capturing more complex forms
of moral uncertainty, we adopt it for tractability and as a first step. Extending the framework to broader
decision-making contexts is a promising direction for future research. Also, the applied analysis in Section
and Section [4] does not rely on the properties of the EU.

“u may capture not only her self-interest, but also other concerns such as altruism, warm glow, and moral
concerns that are not influenced by social image concerns.



deviation from the reference point (shame) differently from an upward deviation (pride) ]

2.1 A Simple Example of Prosocial Behavior

We illustrate the implications of our model by the following simple example. Let z € A =
{0,1} denote the DM’s choice of an alternative, where x = 1 indicates the DM engaging
in prosocial behavior, and x = 0 indicates non-engagement. Let u(0) = u > 0 = wu(1),
w(0) =0 < w=w(l), and fw < @ < w. Thus, the DM privately prefers the non-prosocial
choice but believes that the prosocial choice is more admired. Also, § < 1 means that the

DM is more sensitive to shame than she is to pride.

Benchmark behavior. The DM chooses * = 0 or x = 1 by comparing the utility from

each alternative:

U0;{0,1}) = a_ - [w(%«({%l})) — 0] = @ —w(e({0,1}))

~ J

intrinsic

shame 3
D01 = 0 1800~ ulp (0] = Sla - upl01h)

The expressions are simpler than Eq. because x = 0 never causes pride and x = 1 never
causes shame, regardless of the reference alternative ¢, ({0, 1}).

As a benchmark, suppose r(1) < r(0), i.e., the DM believes that other people in her soci-
ety do not typically engage in prosocial behavior. The reference alternative is ¢,.({0,1}) =0
and the reference point is w(0) = 0. Choosing = 0 gives the DM the intrinsic utility @ and
no utility from social emotion, because she chooses the action dictated by the norm. On the
other hand, choosing x = 1 gives the DM zero intrinsic utility but gives a positive utility

from pride. Since Sw < u, the DM chooses z = 0.

Perceived norms and behavior. The model predicts how the DM’s behavior depends on
the descriptive and prescriptive norms. Consider the following analysis, where each type of

norms shifts toward prosocial behavior relative to the above benchmark.

(i) Higher descriptive norm. Suppose the descriptive norm function becomes r’ such that
r’(0) < r'(1), shifting the reference point to w(¢, ({0,1})) = w. Now, choosing z = 0
gives the DM utility u — w < 0, whereas choosing x = 1 yields zero utility. Thus, the
DM chooses z = 1.

8We emphasize the case with 8 € (0,1), which expresses shame aversion (cf. [Butera et al.|[2022)), though
our theory allows for 5 > 1. Also, it accommodates § = 0 as a limit case.



(ii) Higher prescriptive norm. Suppose that the prescriptive norm function becomes w’
such that w'(0) = 0 and w'(1) = @' > % Then, choosing = 1 provides a pride
benefit of Sw’, which exceeds the utility @ from x = 0. Thus, the DM chooses x = 1.

The DM switches to prosocial behavior z = 1 in both cases, but for different reasons. In
case (i), she chooses © = 1 because she would feel shame if she stuck to the less admirable
choice # = 0 while perceiving that others choose x = 1. In contrast, in case (ii), she chooses
x = 1 because she feels greater pride from x = 1 perceiving that others choose x = 0.

Y

This analysis is insightful for analyzing the effect of “norm nudges,” which guide people’s
decisions by providing social information. Many economic studies have explored the effect
on decisions of information about how others behave (e.g., Frey and Meier| |2004; |Allcott
2011)) or what others think is the appropriate behavior (e,g, [Hallsworth et al.|2017; |[Bursztyn
et al.2020). Our model helps clarify the mechanisms underlying such a norm-nudging.
For example, if information about others’ behavior (normative opinions) mainly affects an
individual’s perceived descriptive (prescriptive) norm,ﬂ then the main mechanism of the effect
of such information is to alter r (w) in favor of prosocial behavior, thereby generating shame
of non-prosociality (increasing pride of prosociality). Thus, the relative effectiveness of each
type of information depends on the DM’s sensitivity to each social emotion, expressed by 3

(more on this below). Of course, effectiveness also depends on the quality of the information.

Public recognition and prosociality. The model illustrates how public observability
affects the DM’s prosociality. Her choice of action under a private decision environment is
expressed as a choice between two menus {0} and {1}, with the utility from each option
Vps({z}) = u(z) (note the absence of social emotions). By contrast, her choice under a
public environment is expressed as a choice between two actions 0 and 1 from the menu
{0,1}, with the utility from each option U(x;{0,1}) in Eq. (3)[] Because U(z;{0,1}) is
strictly increasing in w(z), the DM becomes more prosocial in the public environment than
in the private environment. The above analysis also suggests when policies such as public
recognition programs are ineffective for inducing prosocial behavior: they are ineffective
when the descriptive and prescriptive norms do not sufficiently favor prosocial behavior, or

when the DM is relatively insensitive to pride.

Perceived norms and avoidance. The two-stage model enables us to study how norms

9In reality, information about one norm type may also affect the perception of the other.

10The private and public preferences represent norm-free and norm-conscious preferences, respectively.
Thus, our model applies to more general settings where some environmental cue (including publicity as an
example) triggers the DM to focus on norms.



affect the DM’s decision to participate in the opportunity for prosocial behavior, as well as
her decision on prosocial behavior itself. Analysis of the participation decision is important
for two reasons. First, laboratory and field experiments have documented that a large
fraction of individuals avoid opportunities to engage in prosocial behavior, even if they can
choose non-engagement after participation and even if avoidance is costly (e.g., Dana et
al.| 2000, Broberg et al.|2007; |Lazear et al. 2012; DellaVigna et al.|2012; |Andreoni et al.
2017; |[Klinowski| 2021). Our model clarifies how such avoidance depends on the perceived
descriptive and prescriptive norms. Second, the participation decision is informative of the
DM’s willingness-to-pay (WTP) for publicity and can be used to study the welfare impacts
of policies such as public recognition programs, assuming that pride and shame are welfare-
relevant. For example, her valuation of the menu {0, 1} relative to that of the singleton
menu {0} is informative of her WTP for public recognition[]

Our model illustrates how perceived norms can differentially impact participation and
choice of action. Suppose that the DM first chooses whether to participate in the opportunity
for prosocial behavior. If she decides to participate, she proceeds to the binary-choice stage
described above. Alternatively, she can decide not to participate and be given a singleton
menu {0}, which gives her utility Vpg({0}) = @. In the benchmark case, participation
gives utility Vpg({0,1}) = max{U(0;{0,1}),U(1;{0,1})} = 4, and it is indifferent to non-
participation. Therefore, the DM can optimally participate in the opportunity and then
choose not to engage in prosocial behavior.

Now, suppose that the descriptive norm shifts toward prosocial behavior (i.e., r changes
to 1’). A possible interpretation is that the DM updates her perception of the norm after
she is given information about others’ actions. By the above analysis, the DM switches to
prosocial behavior conditional on participation. On the other hand, with the descriptive
norm 7/, we have Vpg({0,1}) = max{u — w,0} = 0 < Vpg({0}), so the DM avoids the
opportunity for prosocial behavior. Thus, the more prosocial descriptive norm induces the
DM to take a prosocial action if she has no option to avoid the choice occasion, but it induces
her to avoid the occasion if possible.

The theoretical predictions match empirical evidence quite well. In a laboratory exper-
iment, |Klinowski| (2021) demonstrates that (1) when individuals receive information that
others have made a large donation after they participate in the opportunity, they increase
the amount of donation relative to the no-information benchmark, whereas (2) when they re-

ceive the same information prior to the decision to participate, the participation rate drops

WButera et al.| (2022) use an incentive-compatible mechanism to elicit individuals’ WTP for public recog-
nition, in the context of charitable behavior. Our framework infers the WTP using preferences over menus,
which might be useful when WTP-elicitation surveys are unavailable (e.g., naturally occurring data).



relative to the benchmark. Our model can rationalize these findings by the shift of the

descriptive norm caused by the information treatment.

Aligned vs. misaligned norms. The simple model also explains why the descriptive
and prescriptive norms induce larger behavioral changes when they are aligned than when
they are misaligned (Cialdini [2003), and why the descriptive norm tends to trump the pre-
scriptive norm in the latter case (Tyran and Feld 2006; Bicchieri and Xiao 2009).@ When
the prescriptive norm dictates prosocial behavior (w(0) < w(1)) but the descriptive norm
dictates otherwise (7(0) > r(1))[ the DM behaves prosocially if the pride benefit Sw out-
weighs the intrinsic benefit of non-engagement, @. By contrast, when both norms point
to the prosocial behavior (w(0) < w(1) and r/(0) < (1)), she behaves prosocially if the
shame cost w of non-engagement outweighs its intrinsic benefit. If the DM is shame-averse
(8 < 1), which finds some empirical supportm aligned norms induce prosocial behavior more
effectively than misaligned ones. In words, when both norms point to prosocial behavior,
failing to follow them causes shame for falling below social expectations, which is a strong
motivator for prosocial behavior. In contrast, when the prescriptive norms point to prosocial
behavior but the descriptive norms point to the opposite, the social motivation for prosocial
behavior is pride from exceeding social expectations, which may not be a strong motivator.
Thus, the DM will not feel pressure to respect the prescriptive norms and she will behave

non-prosocially, as the descriptive norms dictate.

Other results. In Supplemental Appendix [S.B] we show that the model can explain other
previous empirical findings, e.g., why providing information on others’ prosocial behavior

can reduce the amount of prosocial behavior (e.g., [Schultz et al.|[2007)).

3 Model

We adopt the framework of (Gul and Pesendorfer (2001) (henceforth GP). Let (Z,p) be

a compact metric space, where Z is a finite set of prizes, and let A = A(Z) denote the

12Allcott (2011) and Hallsworth et al.| (2017) find evidence that descriptive norm messages are more ef-
fective than prescriptive norm messages for inducing electricity saving and tax compliance, respectively.
Heinicke et al.| (2022) find that descriptive norms exhibit a stronger correlation with behavior than prescrip-
tive norms in the context of mini-dictator games.

13The opposite misalignment (w(0) > w(1) and r’(0) < r/(1)) is irrelevant; the DM chooses x = 0 because
it is better both intrinsically and socially than « = 1, making »'(0) < /(1) implausible and irrelevant. Put
differently, a relevant case should have conflicting v and w, and r may be aligned to either.

4Butera et al.| (2022) find evidence for shame aversion in prosocial behavior. |DellaVigna et al.| (2017) find
that non-voters in an election sort out of a survey due to the negative feeling from admitting non-voting or
lying about it, while voters do not sort in to enjoy the positive feeling from saying that they voted.



set of probability measures on the Borel g-algebra of Z endowed with the weak topology.
Denote by A a set of all closed subsets of A, and endow A with the topology generated
by the Hausdorff metricE] A typical lottery a € A is called an alternative (or choice), and
a typical element A € A, a set of alternatives, is called a menu (or choice set). Define
aA+(1—a)B={z€eA:2=aa+ (1 —a)b,a€ A,be B} for A,B€ Aand a €0, 1].

We consider a DM who has a preference > over menus and also makes a choice from a
menu by a choice rule C. Specifically, >~ is a binary relation over A, and C : A — A satisfies
) #C(A) C Aforall Ae A We assume that both > and C are observed.

We consider a DM whose choice from a menu depends on a reference point that consists
of her subjective beliefs. Specifically, she references the alternative in the menu that she
believes is most commonly chosen by others. If multiple alternatives are perceived to be most
common, she references the one that she believes is the most admirable. She then derives a
positive (negative) emotion from her choice if she believes that it is more (less) admirable
than the reference alternative. The beliefs on prevalence/commonality are expressed as
descriptive norms, and the beliefs on admirability are expressed as prescriptive norms. The
preferences over menus reflect the anticipated payoffs from such emotions, although the
choices between menus per se do not generate such emotions. We capture this situation by
assuming a two-stage process, where the DM privately chooses a menu in the first stage and

then publicly chooses an alternative from the menu in the second stage.

3.1 Axioms
We first introduce some basic axioms.
Axiom 1. (Order) = is complete and transitive.

Axiom 2.
(i) (Lower Semi-Continuity) For any A€ A, {B € A: A= B} is closed.
(ii) (Upper von Neumann-Morgenstern Continuity) A = B > C implies B >
aA+ (1—a)C for some a € (0,1).
(iii) (Upper Singleton Continuity) {{b} € A : {b} = {a}} is closed.

Axiom [1] is standard. Axioms [2{i)-(iii), similar to axioms in GP to characterize prefer-
ences without self-control, weaken standard continuity. They yield a reference point that
is of a “Strotz representation” (Strotz 1955), which may change discontinuously. Such a

specification seems attractive given that social preferences often feature discontinuities.[igl

15That is, dy(A, B) = max { maxX,e 4 Mminge g d(a, b), maxye g minge 4 d(a, b)}, where d is a metric that
metrizes the weak topology.
16F g., an equal split in dictator games (cf. Andreoni and Bernheim 2009) may be a discontinuity point.
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We proceed by introducing a “revealed descriptive (norm) ranking” >,., which elicits the

DM'’s subjective beliefs about the prevalence of each alternative from observed behavior.

Definition 1. (Revealed Descriptive Ranking)

(1) a >=* b if there exists A > b such that AU{a} = A and a ¢ C (AU {a}).
(i) a >, b if either of the following conditions holds:

a. a>"b.
b. There exists some ¢ € int(A) such that ¢ #* a and ¢ =* b.

(iii) a ~, b if neither a >, b nor b =, a, and a =, b if either a >, b or a ~, b.

a >=* b means that adding a to a menu A > b makes the menu more attractive (AU{a} >~
A) though a is unchosen (a ¢ C (AU {a})). This suggests that a improves the menu A by
lowering its reference point. We then infer that the DM references a at A U {a}, which we
interpret as her perceiving a to be more prevalent than the other alternatives in A, including
b[] Case (ii-b) addresses technical difficulties when a is a boundary element in A (see
Supplemental Appendix [S.DJ).

Next, we define a “revealed prescriptive (norm) ranking” >,,, which partially elicits the
DM’s subjective beliefs about the normative desirability /admirability of each alternative. It
is “partial” in that it elicits the true prescriptive norms w only among alternatives with the

same descriptive ranking (see Theorem [2)).

Definition 2. (Revealed Prescriptive Ranking)

(1) a >y b if one of the following conditions holds.

a. {b} > {a,b}
b. {b} ~ {a,b} and C ({a,b}) = {a}.
c. a~,band{a} ~{a,b} = {b}.

(i) a ~y b if neither a =, b nor b =, a. a =, b if either a >, b or a ~,, b.

The elicitation of the prescriptive ranking is similar to that of the temptation ranking
(GP; |[Noor and Takeoka|[2015)). In case (i-a), adding a makes the menu {b} less attractive.
This suggests that a raises the reference point, which we interpret as the DM perceiving a to
be more admirable than b. In case (i-b), if b sets the reference point at {a, b}, then the DM

faces the same reference point as {b} but does not choose b, suggesting that she is strictly

1"We do not infer strict descriptive rankings from preferences for smaller menus (A = AU{a}). Theorem
shows that >, alone fully elicits the true descriptive norms 7 if the data are generated by our representation,
as long as =, is not constant. We use preferences for smaller menus to infer the prescriptive rankings (see
Definition , just as GP use them to infer the temptation rankings.
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better off at {a, b}, which contradicts {b} ~ {a,b}. Thus, the reference point must be higher
at {a,b} than at {b}. Finally, in case (i-c), because both a and b enter the reference set at
{a,b}, the reference point is weakly higher at {a, b} than at {b}. Thus, {a,b} > {b} implies
that a is the unique choice at {a,b}. Then, {a} ~ {a,b} implies that a must be weakly higher
in the prescriptive ranking than b (otherwise, the DM prefers to exclude b, so {a} > {a,b}).
Below, we focus on PS preferences such that the descriptive and prescriptive rankings are
observationally distinct;ﬁ thus, in case (i-c), a ~, b implies that a must be strictly higher
than b in the prescriptive ranking.

a >, b also implies that a is at least as high as b in the descriptive ranking; otherwise,
the DM does not reference a at {a, b}, so nothing about its normative desirability is revealed.
However, we do not use a >,, b to infer the descriptive ranking, because it does not tell us
whether a is strictly higher than b or just as high as b in the descriptive rankingm

A natural way for the DM to form her perception about socially prevalent actions is that
she imagines a “typical person” and uses that person’s behavior as a reference. Thus, we
impose axioms to rationalize the descriptive ranking as an expected utility (EU) of someone.
For simplicity, we directly impose axioms on >*, >, and >,,, though we can rewrite them

as properties of (=,C) .

Axiom 3. (r-EU)

(i) If a >, b or a =, b, then neither b =, a nor b >, a.
(i) =* is transitive. Also, if a ~. b~ c, a =, b, and b =, ¢, then a =, c.
(iii) a. {a€[0,1): A+ (1 —a)C = B} is closed in [0,1].
b. If there exists a* € A such that a* >, a for all a € A\ {a*}, then for any {A,},
and {a,}, such that A, — A, a, € C(A,) and a,, — a, we have a € C (A).
(iv) For any a € (0,1), aa+ (1 —a)c =" ab+ (1 — a)c and a € int(A) imply a =* b.

Axiom (1) imposes consistency of descriptive rankings and prescriptive rankings revealed
by different observationsm Recall a >, b reveals that a is perceived to be more prevalent
than b. Also, a >, b reveals that a is perceived to be at least as prevalent as b and more
admirable than b. Then, to consistently rank alternatives in prevalence and admirability,
the choice data should not reveal the opposite relations. Axiom [3](ii) states that the directly

revealed descriptive ranking >* is transitive and >, is transitive on the indifference set of

18Distinguishing descriptive and prescriptive norms is pointless if they coincide. In fact, our PS model with
identical descriptive and prescriptive norms is observationally equivalent to a PS model with no descriptive
norms, i.e., constant r. See also Example

9Moreover, the true descriptive norms are fully revealed by >, alone, without using information of >,
for nondegenerate cases (see Theorem [2)).

20Gimilar axioms appear in Dillenberger and Sadowski (2012) and [Kibris et al.| (2023).
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>,. Axiom [3(iii) expresses Archimedeanity of =,. Axiom [3[(iv) imposes some linearity on
the descriptive ranking. Axiom [3{iv) is only required to deal with boundary elements.

Next, we introduce a weak version of the linearity of (>=,C). Due to the potential asym-
metry between positive and negative social emotions, the standard independence axiom may
be violated. For example, suppose $0 =, $100 =, $10, i.e., the DM believes that donation is
uncommon but a large donation is common conditional on donatingﬂ Consider two menus
{$10,$100} and {$100}, both of which have a $100 donation as the reference alternative.
If the shame from donating a small amount despite the social expectation of a large dona-
tion is strong, the DM will conform to the expectation and donate $100 at both menus, so
{$10,%100} ~ {$100}. Now, consider two menus, A = 0.5{$10,$100} + 0.5{$0,$10} and
B = 0.5{$100} + 0.5{$0, $10}, both having 0.5$100 + 0.5$0 as the reference (recall r is lin-
ear). If the reference point is sufficiently low (due to the possibility of $0), then the DM
may choose $10 from A, because it may strike a balance between self-interest and pride. In
contrast, such an option is unavailable at B. Thus, we may have A >= B. This phenomenon
occurs because the relative attractiveness of two alternatives depends on the social emotions
they generate: $100 is preferred to $10 if both generate (possibly zero) shame, whereas the
converse is true if both generate (possibly zero) pride.

This discussion suggests that we should relax the linearity if mixing two menus alters
the types of social emotions generated by each alternative. However, we may keep the
linearity if the mixture preserves the types of social emotions@ To formalize the idea,
let L,(a) = {b€ A:a>, b} denote the set of alternatives which is strictly below a in the
descriptive ranking >,. For an arbitrary a € A, any b <, a belongs to exactly one of the

following sets:

a) = {b € L.(a) : {a,b} = {b} and C({a,b}) = {b}} 4
be L(a): {a,b} < {0} and C({a,b}) = {b}} 5
-(a)
-(a)

P(a) =A{ (4)
S(a) ={ (5)
Ni(a)={be L,(a):{a,b} ~ {b} and C ({a,b}) = {b}} (6)
(a) =A{ (7)
(a) ={ (8)

a

N (a be L.(a):a€C({a,b})} 7
Z(a beA:b~, a} 8

Eq.— partition the set of alternatives b that are below a in the descriptive ranking,

21Such a non-monotonic ranking can be generated by an EU function r such that the Bernoulli utility
function is non-monotonic in the amount of money donated. The non-monotonicity can arise if the Bernoulli
function is the sum of two functions, with one decreasing in the donated amount (e.g., representing selfish
monetary payoffs) and the other increasing in it (e.g., representing altruism or image concerns).

22This assumption leads to a parsimonious model that generates menu effects by the asymmetry between
pride and shame, which still provides useful insights, as illustrated in Section[2] A more general model would
allow the linearity to hold only conditional on the reference point, which would complicate the analysis.
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based on what social emotion the DM feels at the menu {a,b}. With b € P(a), the DM
feels pride by choosing b at {a,b}: Because the DM chooses b at both {a,b} and {b} but
strictly prefers the former, we infer that the unchosen alternative a gives pride by lowering
the reference point. Similarly, with b € S (a), the DM feels shame by choosing b at {a,b},
because a sets a higher reference point than b. With b € Nj (a), the DM feels no social
emotion at {a,b} because the chosen alternative b is socially as desirable as the reference
alternative a. In these three cases, the DM would feel no social emotion if she deviated to
choosing a. With b € N, (a), the DM feels no social emotion at {a,b} because she chooses
the reference alternative, although she may feel pride or shame by deviating to b. Finally,
Z(a) is the set of alternatives that are indifferent to a in the descriptive ranking. In this case,
she never feels pride, because the reference point is set by the most admirable alternative.
Now, let Bp = {{a,b} € A:a=borbe P(a)UNi(a)} collect the binary or single-
ton menus where the DM never feels shame from any alternativeF_g] Similarly, let Bg =
{Ha,b} e A:a=0borbe S(a) UN;i(a) UZ(a)} collect the binary or singleton menus where
the DM never feels pride from any alternative. Finally, let By = {{a,b} € A:a =0 or b € N3(a)}
collect the singletons and binary menus where we cannot exclude any social emotion. Note
we have U;_psnB; = {{a,b} : a,b € A} and N;_psnB; = {{a} : a € A}. We now state our

linearity axioms on (>=,C).

Axiom 4. (Weak Independence) For any « € (0,1),
(i) A,B,C € Bp and A= (>=)B imply A+ (1 —a)C = (=)aB+ (1 — a)C.
(ii) A,B,C € Bg and A = (=)B imply aA+ (1 — a)C = (=)aB + (1 — a)C.
(iii) A,B€ A, ce A and A > (=)B imply aA+ (1 —a){c} = (x)aB+ (1 —a){c}.

Axiom 5. (Weak Linearity) For any a,b,c,d € A and o € (0,1), the following properties
hold.

(i) Suppose {a,b},{c,d} € Bp or {a,b},{c,d} € Bs. Then C(a{a,b} + (1 —a){c,d}) =
aC ({a,b}) + (1 — a)C ({c,d}).
(ii) Let A= af{a,b}+ (1 —a){a,c} and b € Na(a).
a. Ifce P(a), {a,ab+ (1 —a)c} = a{b}+(1—a){a,c}, andC ({a,ab+ (1 — a)c}) =
{ab+ (1 — a)c}, then C(A) = aC ({a,b}) + (1 — a)C ({a,c}).
b. Ifc € S(a), a{b}+(1—a){a,c} = {a,ab+ (1 — a)c}, and C ({a,ab+ (1 — a)c}) =
{ab+ (1 — a)c}, then C(A) = aC ({a,b}) + (1 — a)C ({a,c}).
(iii) For any Ac A, C(aA+ (1—a){a})=aC(A)+ (1 —a){a}.
ZWe do not distinguish {a, b} from {b,a}: e.g., a € P(b) implies {a,b} € Bp.
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Axiom [ states that the independence of > holds within the “pride domain” Bp and
“shame domain” Bg, and that it holds for mixtures with a singleton. Similarly, Axiom
Bli) states that domain-wise linearity of choice holds. Axiom [5(ii) is interpreted similarly,
but requires additional conditions to exclude the possibility that one of the mixed menus
generates pride and the other generates shame. For (ii-a), note that from b € P(a) and
¢ € Na(a), we know that a is superior to b and ¢ in the descriptive ranking. Suppose we also
know {a,ab+ (1 — a)c} = a{b}+(1—a){a,c} and C ({a,ab+ (1 — a)c}) = {ab+(1—a)c}.
This suggests that moving a towards b makes the menu less desirable, and this is not because
a is a preferred choice. We can then infer that a sets a reference point lower than b. Thus,
{a, b} never generates shame, so the linearity of choice holds if it is mixed with a menu that
never generates shame. Similarly, conditions in (ii-b) suggest that a sets the reference point
higher than b, so the linearity holds if {a, b} is mixed with a menu that never generates pride.
Finally, Axiom [[(iii) states that the linearity holds for to mixtures with a singleton.

The next axiom relates preferences > to ex-post choice C.

Axiom 6. (Sophistication) Suppose there exists a* € A such that a* =, ¢ for allc € AUB
and a* =, a for all a € A.

(i) Suppose a* =, b for allb € B. Then, AUB = A. Moreover, AUB = A if and only if
C(AUB)NA=1.
(ii) Suppose b* =, a* for some b* € B. Then, AUB = A implies C(AUB)N A =1{.

Axiom [6[1) concerns situations in which some a* € A sets the reference point at AU B.
Then, the DM weakly prefers the larger menu AU B to A because it expands options without
changing the reference point. Moreover, the larger menu is strictly preferred if and only if
the added menu contains an option strictly better than all alternatives in A. Axiom [f]ii)
concerns situations in which an added alternative b* € B sets a higher reference point than
the reference point at A. The DM then weakly prefers the larger menu only if the added
menu B contains a strictly better alternative to be chosen than alternatives in A.

The next axiom captures the DM’s shame attitude, i.e., how her social payoff depends on
the size and direction of the deviation of her choice from the reference point. We consider
a DM whose marginal utility from pride and that from shame are constant, respectively,
but who may care about pride and shame differently. The following axiom captures such an
attitude toward pride and shame. Let e’ denote an alternative such that {e™*} ~ {a,b}.
For {a,b} € Bg, such e*® exists by Lemma in Supplemental Appendix .

Axiom 7. (Constant Shame Attitude) There exists a unique o € (0,1) such that, for
any a,b,c,d € A with ¢ € P(a)NP(b) and d € S(a)NS(b), we have a{a,c}+(1—a) {**} ~
a{bc} + (1 —a){e=}.
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To interpret Axiom [7] suppose ¢ € P(a) NP(b) and {a, c} > {b,c}. At each menu, a or b
sets the reference point and the DM feels pride by choosing ¢. Then, a must be considered
normatively inferior to b and generates higher pride for choosing the same alternative c.
Suppose also d € S(a) N S(b). Then, similarly, the DM prefers {a,d} to {b,d} because a
generates lower shame than b does for choosing the same alternative d. Now, consider the
choice between two lotteries: lottery 1 yields the payoff from the high-pride menu {a,c} or
that from the high-shame menu {b, d} with probability o and 1 — «, respectively, and lottery
2 yields the payoff from the low-pride menu {b, ¢} or that from the low-shame menu {a, d}
with the same mixing rate. As « increases, lottery 1 becomes more desirable, and the DM
will be indifferent between the lotteries at some a. Such « indicates the rate at which the
DM trades off the gain from more pride with the loss from more shame. Axiom [7]states that
this trade-off rate is constant. Moreover, the trade-off rate measures the degree of shame
aversion: the higher «, the more shame-averse the DM is, because she demands a higher

pride gain to compensate for the loss from shame.

Definition 3. (Shame attitudes) (i) The DM is a-sensitive to shame if her preference
(=,C) satisfies Aziom [] with a € (0,1). (i) The DM who is a-sensitive to shame is shame-
averse if a > %; shame-neutral if o = %; and shame-loving if o < %

Our final axiom imposes some consistency of choices across menus. Consider the dona-
tion example above which features the violation of independence. There, the DM believes
that donation is uncommon but a large donation is common conditional on donating. Then,
she may choose $100 from {$10,$100} to avoid the shame of falling behind the social ex-
pectation of a large donation, whereas she may choose $10 from {$0,$10,$100} because a
small donation nicely balances self-interest with pride from exceeding the social expectation
of zero donation. This choice pattern violates the WARP. This pattern emerges because the
relative attractiveness of $10 and $100 changes as the reference point changes. This example

suggests the following axiom.

Axiom 8. (Weak WARP) For any A, B € A, suppose there exists a* € AN B such that
a* >, cand a* =, c for allc € AUB. Then, a,b € ANB, a € C(A) and b € C(B) imply
a€C(B).

a* >, a and a* =, a for all a € A suggests that a sets the reference point at A. Thus,

Axiom [§] says that the standard WARP property applies to menus A and B which share a

common reference-setting alternative a*.

3.2 Representation Theorem

We show that our axioms characterize the following utility representation.
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Definition 4. (>,C) is a pride-shame (PS) preference if there are continuous linear func-
tions u,w and r and a constant B > 0 such that = is represented by

Vps(A) = max U(x; A) (9)

T€EA

and C coincides with Cps(A) = argmax,ca U(x; A), where U(x; A) is written as

U(z; A) = u(z) — max{ max w(y) — w(x),()} +/ max {w(aj) — max w(y),()} (10)
yEpr(A) N yepr(A) 5
“sh‘a;ne” “pl:i,de77

and ¢, (A) = argmaxgear(a). This representation is called a PS representation.

maXyc,, (4) W(y) is interpreted as the normative desirability that the DM perceives is
expected to achieve, which we simply call the reference point. It consists of two distinct
components. First, the descriptive norm function r represents the DM’s belief about the
prevalence/commonality of each alternative. The DM’s reference set ¢,.(A) consists of alter-
natives which she believes is the most prevalent in A. Second, the prescriptive norm function
w represents the DM’s belief about the social desirability/admirability of each alternative.
When ¢, (A) contains multiple alternatives, the DM adopts the highest value of w in ¢, (A)
as the reference point.

We say that a DM with a PS preference feels pride (shame) by choosing a € A at A if
w(a) — maxyep, (a) w(y) > (<)0. In words, the DM feels pride (shame) if she chooses an
alternative that she perceives is normatively superior (inferior) to the reference alternative.
Pride (shame) gives the DM a positive (negative) payoff. Because the DM may care about
shame differently than pride (Butera et al.|2022)), we allow the DM to be more or less sensitive
to shame than to pride, by allowing £ # 1.

The PS representation includes GP’s model as a degenerate case. For axiomatization,

however, we focus on a class of nondegenerate PS preferences.

Definition 5. (Nondegeneracy) (=,C) is nondegenerate if there ezist x,y,y € A such
that y € P(z) and y' € S(x).

Nondegeneracy ensures that the DM feels pride at some binary menu and shame at
another. The temptation preference of GP is degenerate. In Section we show that such
a degenerate preference may accommodate non-unique PS representations. Thus, our main
theorem focuses on preferences that accommodate a unique PS representation up to positive
affine transformation (see Section . We can show that nondegeneracy holds generically
if dim(Z) > 4. See Supplemental Appendix for further discussions of nondegeneracy.

Note also that nondegeneracy is testable.
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We now state our main theorem.

Theorem 1. A nondegenerate preference (=,C) satisfies Azioms -@ if and only if it admits
a PS representation. Moreover, the decision maker is shame-averse if § < 1, shame-neutral
iof B =1, and shame-loving if B > 1.

3.3 Sketch of the Proof of Theorem [1]

Our proof, formally presented in Appendix[A] begins by verifying that the descriptive ranking

>, admits a linear representation r.

Lemma 1. If Azioms[I{J hold, then =, admits a linear representation r. The representation

s unique up to positive affine transformation.

Define the reference correspondence as ¢,.(A) = {a € A :r(a) > r(b) Vb € A}. We can

then show the following important properties of ¢,.

Lemma 2. If Azioms [ hold, then the following conditions hold for any finite A, B € A.
(i) ©,(AU B) = ¢,.(A) implies AU B = A.
(i7) p.(AUB) =, (A)Up.(B) and A= B imply A= AUB = B.

Lemma (1) states that if augmenting menu A by menu B does not affect the reference
set, then the DM weakly prefers the larger menu. In this case, the DM exhibits a preference
for larger menus (cf. Evren and Minardi|[2017)) because the addition will never worsen her
social emotion. In contrast, Lemma [2{(ii) states that if the addition of alternatives expands
the reference set, then the set betweenness property (Gul and Pesendorfer 2001) holds. In
particular, the DM exhibits a preference for smaller menus (cf. |Dillenberger and Sadowski
2012)) because the addition will never improve her social emotion.

Lemma [2] implies that the preferences over finite menus can be characterized by at most

two elements in each menu.

Lemma 3. If Azioms[I{f] hold, then, for any finite menu A € A, there exist a* € A and
b* € ¢.(A) such that A ~ {a*,b*}.

The remaining components u and w can be constructed by an approach similar to |Gul
and Pesendorter|[2001, although we address several technical difficulties due to the violation
of independence and WARP. We first show that there exists a function Vpg that represents

> and satisfies some linearity. Let A; denote the set of all finite menus in A.

Lemma 4. If Azioms[1{f] hold, then there exists a function Vpg that represents = on Ay and
satisfies the following property: A, B € Bp or A, B € Bs implies Vps (0A+ (1 — a)B) =
OéVpS (A) + (1 — a)VpS (B)
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Lemma [4 and nondegeneracy allow us to construct two linear functions, wp on the pride
domain and wg on the shame domain. Then, Axiom [7 implies that the two functions are
proportional: (1/8)wp(x) = ws(z) = w(z) for some > 0[]

We can show that the PS representation holds for all binary menus. Then, Lemma
allows us to extend the representation to all finite menus, and Axiom [2| further extends the

result to all menus in A. For choice C, Axiom [§] extends the representation to all menus.

3.4 Uniqueness of PS Representation
3.4.1 Uniqueness of Descriptive Norm Function

>, is unique given choice data (>=,C), and the representation r of »=, is unique up to positive
affine transformation. However, >, is merely a specific way to reveal the underlying descrip-
tive norms. In general, there can be two PS representations with different reference sets (i.e.,

different descriptive norm functions), such that both represent the same choice data.

Example 1. Suppose that the choice data (=,C) are generated by the temptation preference
of GP: Vgp(A) = maxgea {u(z) + w(z) — maxyeaw(y)}. Then, a strict descriptive ranking
a >, b never occurs, so the descriptive norm function which rationalizes =, is a constant.
However, the data can also be represented by another PS preference with r = w, because

maxye,, (4) W(Y) = maxyes w(y). Thus, the data cannot distinguish the two models.

However, we show below that when the data are generated by a PS preference that
satisfies some nondegeneracy property, =, correctly elicits the true descriptive norm r. Thus,
among the PS preferences that satisfy the property, the descriptive norm function » which
is consistent with observed data is unique up to positive affine transformation. It turns out
that the following weak version of nondegeneracy is sufficient to ensure that the descriptive

norm function revealed by >, is the only one that is consistent with data.

Definition 6. (Weak Nondegeneracy) (=, C) is weakly nondegenerate if there exist some
a,be A such that a >=* b.

Theorem 2. Suppose the data are generated by a weakly nondegenerate PS preference rep-
resented by (u,w,r,B). Then, the following statements hold. (i) r(a) > r(b) if and only if
a >, b. (i) For a,b € A with r(a) = r(b), w(a) > w(b) if and only if a =, b.

24 Another possible way is to construct w directly from >,,. However, =, elicits the true prescriptive
ranking w only between alternatives with the same descriptive ranking, so such a proof will involve an
incomplete binary relation. Instead, we construct w from Vpg and then show in Theorem [2] that w indeed
represents =, on the indifference sets of ~,..
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Under weak nondegeneracy, the only descriptive norm r consistent with the data is the
one revealed by =,: if r and 7’ are both consistent with the data, then r(a) > r(b) <
ar,b<r'(a) >1(b) for any a,b € A. Weak nondegeneracy is implied by nondegeneracy,
so Theorem [I] focuses on the case where this uniqueness holds. Also, a similar uniqueness
result holds for the prescriptive norm w, among alternatives indifferent in ~,.. Note that the
preference in Example |1} is excluded by weak nondegeneracy. E See Supplemental Appendix
for a graphical illustration of weak nondegeneracy and Theorem [2[(i).

3.4.2 Uniqueness of (u,w,r,f3)

We can also show that u and w are unique up to affine transformation and that [ is unique,

when (>, C) satisfies the above axioms and nondegeneracy.

Proposition 1. Suppose a nondegenerate (=,C) satisfies Azioms -@ Then the following

statements are equivalent.
(i) If a PS representation (u,w,r,[3) represents =, then (u',w’ 7", 3’) also represents ».
(ii) The following properties hold.

a. u' =0u+y, and w' = 0w + v, for some 0 >0 and v,, v, € R.
b. ' =0,.r 4+, for some 6, >0 and v, € R.

c. =10

3.5 Comparing Shame Aversion

Definition [3] yields a notion of a DM being “more shame-averse” than another DM. For two
DMs i = 1,2, let (=;,C;) denote the preference of DM i.

Definition 7. Suppose DM i € {1,2} is y-sensitive to shame. Then DM 1 is (weakly) more
shame-averse than DM 2 if a; > (>)as.

We now state how the PS representation and observed behavior are linked in terms of
(relative) shame aversion. For i = 1,2, let P; and S; denote the set of pride-generating
binary menus P and the set of shame-generating binary menus S defined in Eq. and ,
respectively, for DM i. Also, let e;¥ € A be such that {e]"¥} ~; {z,y}.

Proposition 2. Suppose DM 1 and DM 2 have a PS preference, with parameters B and (s,

respectively. Then, the following statements are equivalent.

25Conversely, if (=, C) violates weak nondegeneracy, then 7 is constant. Then, Lemmareduces to Axiom
4 (Set Betweenness) of GP, and Vpg in Lemma [4] satisfies linearity for all binary menus. Although we can
possibly pursue an axiomatization of the GP representation for this case, we omit it.
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(i) b1 < (2)Ba
(ii) DM 1 is (weakly) more shame-averse than DM 2.
(iii) Take any o € (0,1) and any a,b,c,d such that ¢ € P;(a) N Pi(b), d € S;(a) N S;i(b),
{a,c} =; {b,c} and {a,d} =; {b,d} fori = 1,2. Then, a{b,c} + (1 — ) {eg’d} =9

afa,ct+(1—a) {eg’d} implies a{b,c}+(1—a) {ecf’d} =1 (m1)a{a,ct+(1—a) {el{’d}.

By the equivalence of (i) and (ii), 8 in the PS representation characterizes the DM’s
shame aversion. Also, the equivalence of (ii) and (iii) implies that we can compare the
shame aversion of two DMs by the following experiment: Consider two lotteries, lottery 1
giving the payoff of a high-pride menu {a,c} and that of a high-shame menu {b,d} with
probability a and 1 — « respectively, and lottery 2 giving the payoff of a low-pride menu
{b,c} and that of a low-shame menu {a,d} with probability o and 1 — « respectively. Ask
the DMs to choose between the two lotteries at various a. Then, DM1 is more shame-averse
than DM2 if and only if DM1 chooses the “safer” lottery 2 whenever DM2 does.

4 Empirical Perspective

Our PS model can provide a basis for a revealed preference approach to studying the be-
havioral and welfare effects of social norms and norm-evoking policies. Instead of requiring
highly rich data to verify all of the above axioms, researchers may assume that the choice
data are generated by a PS peference and then derive stronger conclusions about behavior
and welfare. We illustrate this point below. The proofs for the results in this section are
straightforward given the representation and hence relegated to Supplemental Appendix [S.C|

Some of the most important empirical questions are about whether the descriptive and
prescriptive norms are different, and how they affect welfare. Economists typically emphasize
either descriptive norms alone or prescriptive norms alone. A small number of studies that
feature both (e.g., |Allcott|2011; Hallsworth et al.|2017; Heinicke et al.[|2022) do not provide
detailed mechanisms for how they interact to affect behavior and welfare. Our model pro-
poses that the descriptive and prescriptive norms influence behavior and welfare by shaping
social emotions, namely pride and shame, depending on how they are aligned. Thus, it is
crucial to ensure that empirical researchers can test whether descriptive and prescriptive
norms are different, and how pride and shame are distributed, in a given context of interest.

The following result suggests how we can test whether the descriptive and prescriptive

norms are distinct, and also how they are distinct from the intrinsic (i.e., private) preference.

Claim 1. Suppose the DM has a PS preference. Then, the following statements hold, where

|| represents equality up to positive affine transformation.
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(i) r }f w if weak nondegeneracy holds.
(ii) wlf w,r if there exist some A € A and a € A such that {a} > A.

Claim [1| provides a basis for empirically distinguishing descriptive norms, prescriptive
norms, and intrinsic preferences. To illustrate, suppose a denotes making no donation and
b denotes making a donation. If an individual who chooses b anyway (C({a,b}) = {b} =
C({b})) is willing to make her decision publicly observed rather than leave it private ({a, b} =
{b}), then this indicates that r and w are different (in particular, r(a) > r(b) and w(a) <
w(b)). This is empirically testable, e.g., by asking individuals to choose whether they donate
and asking their WTP for publicly recognizing their decision (cf. Butera et al[2022)). Next,
if an individual avoids the opportunity to donate ({a} > {a,b}), this indicates that u is
different from w and r. This is again empirically testable, e.g., by asking the individual to
choose whether they want to participate in the choice opportunity, possibly with a cost of
avoidance (e.g., Dana et al.|2006; Broberg et al.|[2007}; Lazear et al.|2012; DellaVigna et al.
2012; |Andreoni et al.[2017; [Klinowski|2021)).

Furthermore, the PS model allows us to test whether individuals feel pride or shame.

Recall that a DM feels pride (shame) by choosing a at A if w(a) — maxye,, (a) w(y) > (<)O0.

Claim 2. Suppose (=,C) is a PS preference such that C({a,b}) = {b} P¥ Then,

(i) the DM feels pride by choosing b at {a,b} if and only if {b} < {a,b} = {a}.
(ii) the DM feels shame by choosing b at {a,b} if and only if {b} = {a,b} = {a}.

Importantly, Claim [2] allows us to investigate the heterogeneity in social emotions. In
many contexts, some people will feel pride while others feel shame (e.g., Butera et al.[2022)).
Understanding such heterogeneity is important for welfare analysis as well as behavioral
predictions, because the welfare effects of policies can crucially depend on the distribution of
behavioral responses (Allcott et al.[2025)). Our framework allows researchers to investigate
how behavioral responses to a policy and associated social emotions differ, e.g., between
female and male workers or between black and white students.

Finally, our framework facilitates an appropriate welfare analysis even when individuals
do not feel any social emotion. Recall the example of prosocial behavior in Section with
norms (r’',w) such that 7/(0) < /(1) and w(0) < w(1). In this case, both norms dictate
prosocial behavior x = 1, and the DM follows the norms to avoid the shame from deviating
to x = 0, so she does not feel pride or shame from her choice. However, a public recognition
policy that forces the DM to make a choice at {0, 1} is welfare reducing relative to the outside

option of avoiding prosocial behavior in private ({0} >~ {0,1}). Incorporating preferences

261f C({a, b}) = {a, b}, then the social emotion depends on the realization of the ex-post choice.
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over menus is useful to study the welfare effects of norms and norm-evoking policies with a
revealed preference approach, when social pressure forces the DM to choose an action that

she nonetheless wants to have removed (cf. [Bursztyn et al.|[2025)).

5 Related Literature

Social Norms and Image Concerns. To the best of our knowledge, this paper is the first
to formalize and axiomatize the notion of descriptive and prescriptive norms in a decision-
theoretic model. In social psychology (Cialdini et al.|[1991} Schultz et al.|2007)), descriptive
norms refer to norms that dictate individuals to do what is typically done by others, and
prescriptive (or injunctive) norms refer to norms which dictate them to do what people
approve of. |Bicchieri and Dimant| (2022) define a social norm as a behavioral rule that
individuals prefer to follow because they believe that (i) others follow it and (ii) others think
it should be followed. In our model, social norms are shaped by two functions r and w, where
r represents the former belief (perception) and w represents the latter.m Also, the DM feels
payoff-relevant social emotions by comparing her own choice with others’ choice (if r reflects
others’ choice), which closely follows the literature on social comparisons (Festinger|[1954)).
We also contribute to the growing literature on social pressure or image concerns (e.g.,
Bénabou and Tirole/ 2006, and see also footnote . Our contribution is to propose a model
with image concerns which is useful for applied analysis. By distinguishing the two types of
norms in a simple manner, the model explains various behavioral patterns parsimoniously,
and it clarifies the mechanisms behind the behavioral and welfare impacts of norms and norm-
evoking policies (see Section . Our model is also tractable in that it does not impose an
equilibrium assumption (unlike social signaling models); instead, it is directly disciplined by
observable choice data. This facilitates analysis of misperceived norms. Finally, our utility
representation is transparently linked to choice data, and it facilitates empirical analysis

based on revealed preferences. Section [4] discusses possible applied analyses.

Axiomatic Decision Theory. Our model relates to the axiomatic two-stage models of
choices with temptation (Gul and Pesendorfer|2001} Noor and Takeoka)2015) or social emo-
tions (Dillenberger and Sadowski 2012; |Saito 2015; Evren and Minardi| [2017; |Hashidate
2021)), and axiomatic models of endogenous reference points (Ok et al. 2015} Lleras et al.
2019; Kibris et al.|2023). The former consider decision problems where the DM chooses a

menu of alternatives in the first stage and then chooses an alternative from the menu in the

2TBicchieri and Dimant| (2022)) refer to the former belief as empirical expectations and the latter as nor-
mative expectations, and they define a social norm as a behavioral rule governed by these expectations.
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second stage. The models with social emotions, including ours, also assume that the first
stage is private whereas the second stage is publicly observed, and that the DM anticipates
social emotions due to public observability when making the first-stage choice. However, our
model differs from the previous models in important ways. The latter models of endogenous
reference do not include preferences over menus, so our way to elicit reference is new. Below,
we discuss each paper in more detail.

Gul and Pesendorfer| (2001)) and Noor and Takeoka| (2015|) consider preferences over menus
of lotteries. Noor and Takeoka/ (2015)) also use choices from each menu, as we do, to derive
a Menu-Dependent Self-Control (MDSC) representation. In the MDSC representation, the
self-control cost (similar to the social payoffs in our model) of choosing x from A is specified by
¥ (maxye 4 w(y)) (maxyes w(y) — w(x)), where ¢(-) > 0. Both their and our representations
generalize the GP representation by relaxing the independence axiom (and WARP). While
their self-control cost function is more flexible than our piecewise linear “cost” of social
emotions, our emotional cost can be negative, which is essential for generating pride.

Dillenberger and Sadowski (2012) and |[Evren and Minardi (2017) study preferences over
menus consisting of social allocations of non-stochastic objects (e.g., dictator games). Dil-
lenberger and Sadowski| (2012)) characterize shame, which involves a preference for smaller
menus. In contrast, |Evren and Minardi (2017) characterize warm-glow, which involves a
preference for larger menus. Our axioms capture both types of preferences, depending on
whether adding alternatives to a menu expands the reference set (see Lemma .

Saito (2015) and |[Hashidate| (2021)) study preferences over menus consisting of social
allocations p = (p;)icf1jus of lotteries, where 1 denotes the DM and S denotes the set of other
agents. Saito| (2015) derives the generalized utilitarian (GU) representation, which generates
the pride 8 maxgea a1(u(qr) — u(p1)) > 0 of acting altruistically if the DM compromises
her private payoff, and the shame —fBgmax,ca(d ;o iu(ri) — > ;e asu(p;)) < 0 of acting
selfishly if the DM compromises other agents’ private payoffs.@ Hashidate| (2021) generalizes
the GU representation, allowing for various social emotions. Their models generate social
emotions by comparing the DM’s or other agents’ private payoffs to reference points. In
contrast, pride and shame in our model arise from the comparison of the perceived normative
desirability of the own choice against the reference alternative’s desirability. We believe
separating these emotions from private payoffs is vital for two reasons. First, our model
formalizes the concept of social norms discussed above closely. Moreover, we argue that pride

and shame should depend on the degree to which the DM can live up to social expectations

28Gaito| (2015)) allows for 3; < 0, expressing the case of the temptation to act selfishly.
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(norms), not the degree to which the DM’s or other agents’ private payoffs are sacriﬁced@
Second, our formulation explains empirical findings discussed in Section [2| straightforwardly.
For example, when information about others’ behavior alters the DM’s choice, it is plausibly
due to changes in perceived norms, rather than changes in private payoffs.

Our model also has differences from previous axiomatic models of endogenous reference
dependenceﬂ besides how to elicit the reference. Ok et al. (2015) characterize choice be-
havior which exhibits the “attraction effect.” In their model, a dominated (hence unchosen)
alternative serves as a reference alternative and restricts the choice set to alternatives that
dominate it. In contrast, in our model, the reference alternative may be chosen, and it affects
the preferences (beliefs) but not choice sets. [Lleras et al.| (2019) consider a preference over
state-contingent contracts (acts) and derive a representation that evaluates an act based on
its expected value and expected gain/loss relative to the expected value. Their representation
allows the DM to derive payoffs from either expected gain or loss, but not both. In contrast,
the DM in our model may feel pride from an alternative and shame from another. |Kibris et
al.| (2023) consider choice problems generated from a finite set of alternatives, and derive a
model where the reference point is determined by an endogenously derived conspicuity rank-
ing, just as an endogenously derived r defines reference in our model. Their representation
is quite general, but they do not characterize a specific structure of the reference point in

our model, so our axiomatization result is not implied by their work.

6 Conclusion

Despite the growing interest in using social norms to influence behavior, their behavioral and
welfare effects are not well understood. We propose and axiomatize a model of reference-
dependent decision-making in which the decision maker’s perception of others’ choice (de-
scriptive norm) and her perception of others’ normative opinions (prescriptive norm) together
shape a reference point. The key drivers of behavior are social emotions, specifically a pos-
itive payoff from pride, which she enjoys if her choice exceeds the reference point, and a
negative payoff from shame, which she suffers if her choice falls short of it. The simple
model provides useful implications, e.g., when public recognition programs or norm nudges
likely induce prosocial behavior, how policies can incentivize more prosocial behavior but
also induce choice avoidance. It also explains why aligned descriptive and prescriptive norms

are more effective for inducing prosocial behavior compared to misaligned ones, and why the

29Scheff] (1988) discusses how perceived social expectations set a system in which conformity to norms is
sustained by the reward of pride and punishment of shame.

30K&szegi and Rabin| (2006) develop a non-axiomatic model of endogenous reference formation. In their
model, the agent’s reference point is constrained by rational expectations.
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descriptive norms may have a larger impact in the latter case. Moreover, the model is sim-
ple yet useful to study the mechanisms behind policy effects, tractable because it does not
impose an equilibrium assumption, and transparent in its relation to observed choice, which
may usefully guide empirical analysis based on a revealed preference approach.

This paper has several limitations. First, our model relies on expected utility functions,
which may not fully capture the complexity of social decision-making particularly when indi-
viduals care not only about outcomes but also about how those outcomes are generated (cf.
Saito||2013)). Second, we do not model how individuals’ perceptions are shaped. For example,
they may arise as equilibrium objects of a game (cf. Bénabou and Tirole 2006), and an equi-
librium restriction may be necessary to study how norms evolve over time. Alternatively,
individuals may form perceptions in a self-serving manner (Heinicke et al.|2022; Bicchieri et
al.|2023)), and this process may be crucial for predicting the effects of norm nudges. Third,
norms may be specified more flexibly. For example, an individual may compare her be-
havior with the behavior of a group of individuals rather than that of a “typical person.”
The reference point may then depend on the distribution of the descriptive norms of others,
yielding a “random Strotz” representation (Dekel and Lipman/[2012). Eliciting information

on individuals’ reference groups from their choice is an interesting topic for future research.
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A  Proofs

We first prove the sufficiency part of Theorem [I], i.e., that Axioms are sufficient for a
nondegenerate preference to have a PS representation. We next prove Theorem [2 which is
used to show the necessity part of Theorem[l] i.e., that the representation implies the axioms.
Finally, we prove the remaining results. Straightforward results and proofs, including the
proof of the necessity part, are relegated to Supplemental Appendix [S.C|

We denote a mixed lottery aa+(1—a)b € A by aab and a mixed menu aA+(1—a)B € A
by AaB, for any a,b € A, A,B € A, and « € [0, 1].

We note that under Axioms [}f5] the definition of >, can be simplified as follows: a >, b
if and only if there exists some ¢ € int(A) such that ¢ #* a and ¢ >* b. See Lemma [S21]

Below, we use this simplification without mention.

A.1 Proof of Theorem [1] (Sufficiency of Axioms)
A.1.1 Proof of Lemma [1]

We prove that >, satisfies the following properties.

Completeness. Immediate from the definition of >,.

Transitivity. 1t is straightforward to show that >, is transitive (see Lemma . Now,
suppose a =, b=, c. If a =, b =, ¢, then a >, c. Next, suppose a >, b ~, ¢. Then, we have
d #* a and d >* b for some d € int(A). By, b ~, ¢, we have d >=* ¢, hence a >, ¢. We can
similarly show a >, ¢ if a ~, b >, ¢. Finally, suppose a ~,. b ~,. c. If a %T ¢, then we have
¢ > a ~, b, so the above argument yields ¢ >, b, a contradiction. Thus, a >, c.

Independence. Suppose a =, b. Then d #* a and d >=* b for some d € int(A). We then
have dac =* bac (see Lemma[S19), and Axiom Bf(iv) implies dac #* aac, so aac =, bac.

Archimedeanity. Let a >, b =, ¢. Then, there exist d,e € int(A) such that d ¥#* a,
d>=*b, e #* b, and e =* c. By Lemma and Axiom (iv), we have dac #* aac, dac =* b,
and e =* afc for some «a, § € (0,1). Thus, we have acc >, b =, afc.

Thus, by the Mixture Space Theorem, >, admits a linear representation r, and the

representation is unique up to positive affine transformation. [J

A.1.2 Proof of Lemma [2

(i) If A = AU B, then there exists b € B\ A such that b >, a or b =, a for all a € A (see
Lemma [S24](i)). By Axiom [3[(i), we have b =, a, hence r(b) > r(a), for all a € A. Thus,

er (AUB) # ¢, (A).
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(ii) Suppose ¢, (AUB) = ¢, (A)U ¢, (B) and A = B.If A = B >~ AU B, then by
Lemma [S24{i) there exist some a* € A\ B such that a* >, b or a* >, b for all b € B and
some b* € B\ A such that b* >, a or b* >, a for all a € A, which contradicts Axiom [3{i).
Next, suppose AU B > A = B. Note that at least one of C(AUB)NAor C(AUB)NB
is nonempty. If C (AU B) N A # (), then there exists b € B\ A such that r(b) > r(a) for all
a € A (see Lemma [S24(ii)). Then, ¢, (AU B) = ¢, (B) # ¢, (A) U ¢, (B), a contradiction.
A similar contradiction results if C (AU B)N B # (). Thus, A> AUB > B. [

A.1.3 Proof of Lemma [3l

For any a € A, pick b, € ¢, (A) such that {a,b} = {a,b,} for all b € ¢, (A). Let a* € A be
such that {a*, b,«} = {a,b,} for all a € A and let b* = b,«. Then, iteratively applying Lemma
(i), {a*} U (A) = Usey, () {a*,b} = {a*,b*}. Further, because A = ({a*} U, (4)) U
(A\ ({a"t U (4))) and ¢r (4) = ¢, ({a*} Uy, (A)), applying Lemma (i) yields A =
{a*} Uy, (A) = {a*,b*}. Next, by construction, {a*,b*} = {a,b,} for all @ € A. Then
iteratively applying Lemma [2[ii) yields {a*,b*} = Usea {a,b,} = A. O

A.1.4 Proof of Lemma [4

For j € {P,S}, let A; = {A cA: A= A A, €B;, M < oo} denote the set of
finite mixtures over B;. Also, for notational simplicity, define Ay = By. By Lemma 1 of GP,
for each j € {P, S}, = restricted to A; has a linear representation V7. In addition, by Axioms
and [0 b € Na(a) implies {a,b} ~ {a} (see Lemma[S25)). Therefore, for each A € Ay, we
have A ~ {a”} for some known a® € A. Thus, VV(A) = VP ({a?}) represents = on Ay.
By Lemma 1 of GP, each representation’s restriction to singleton sets is continuous.

By construction, for any j,k € {P,S,N}, VIi({a}) > VI({b}) & {a} = {0} &
Vk({a}) > V¥ ({b}). The linear representation of = on singletons is unique up to positive
affine transformation, so we can normalize V7 so that V7 ({a}) = V* ({a}) = Vsingleton ({4})
for all a and all j, k.

To link representations of > across different domains, we note that if A € AgU Ay, then
there exists some e € A such that A ~ {e} (see Lemma [S27)). Intuitively, such A is either
indifferent to some a € A, or we can find a,a’ € A such that {a'} = A > {a}, in which case
A is indifferent to a’aa for some a.

We now obtain the desired representation of = on Ap U Ag U Ay, which contains all
binary menus. For notational simplicity, in Lemma [ we eliminate from Ap menus which
are contained in Ag (i.e., Ap denotes Ap \ AS).E

31Such duplicates arise from menus {a, b} such that b € Ni(a), which belongs to Bp N Bg.

31



Lemma 5. Suppose Axioms hold. Define V: ApUAs U Ay — R by

V(A) = Z VI(A) x T{A € Aj and |A] > 1} + Vsingleton (A) 5 [ | A = 1}.
jE{P,S,N}
Then, V represents = on Ap U As U Ax. Moreover, A,B € Bp or A,B € Bg implies
V(AaB)=aV (A) + (1 —a)V (B).

Proof. Note any A € ApUAsUAy belongs to exactly oneof {B € A, : |B| > 1},j=P,S,N,
or {B:|B| =1} (by the re-definition of Ap). Suppose A > B for A € A; and B € A;. If
|A] = 1, then V (A) = Vsinsleton (4) = V¥ (A) > V¥ (B) = V (B). A similar result obtains
if |[B] = 1. Now, suppose |A] > 1 and |[B] > 1. If j = k = P, then V (A) = V¥ (A) >
VP (B) =V (B). Otherwise, by Lemma [S27} there exists some e € A such that A ~ {e} or
B ~ {e}. For the former case, V (A) = VI (A) = VI ({e}) = V¥ ({e}) > V¥(B) = V (B),
thus V' (A) > V (B). Proof for the latter case is analogous. Thus, A = B = V(A) > V(B)
holds. Similarly, B = A = V(B) > V(A) holds.

To prove the last statement, note that for A € A;, j € {P, S}, we have V (4) = V7 (4).
Because AaB € A; for any A, B € B;, we obtain V (AaB) = V7 (AaB) = V7 (A) + (1 —
a)VIi(B)=aV (A)+ (1 — a)V (B). O

Finally, we obtain the desired representation as follows. Take V' from Lemma [5| and
define, for each finite A € A, Vpg (A) =V ({a*,b**}) where a?* € A and b** € ¢, (A) are
constructed as in Lemma . Then A = B & {aA*,bA*} - {aB*,bB*} sV ({aA*,bA*}) >
V ({aB*, bB*}) < Vps (A) > Vpg (A) . Thus, we have obtained the desired function Vpg. O

We additionally have the following result, analogous to GP.

Vps(A) = max min Vpg({a,b}) = min max Vpg({a,b}). (11)

a€A bep,(A) bEp,(A) acA

Proof is straightforward given the proof of Lemma [3, hence omitted.

A.1.5 Proof of Theorem (1| (Sufficiency), Continued

For some two-component mixtures (denoted A) of binary menus, Axioms [5{ and @ identify a
binary subset of A to which A is indifferent. (Proof is in Supplemental Appendix )

Lemma 6. Suppose Azioms hold. Let A = {a,b}a{c,d} € A. Then, the following

statements hold.

(i) If b € P(a) UNi(a) and d € P(c) UN:(c), then A ~ {acc,bad}.
(ii) If b € S(a) UNi(a) and d € S(c) UN;(c), then A ~ {aac,bad}.
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(i) If b € Z(a), {a,b} = {a}, and d € S(c), then, {aac,bad} = A. If, in addition,
{b} >~ {a,b}, then {acc,bad} ~ A.
(i) Suppose b € Z(a), {b} > {a,b} ~ {a}, a € C({a,b}), and d € S(c). Then, A ~
{a} a{c,d} = {aac,bad}, and the latter relation is strict if and only if C ({a,b}) = {a}.
(v) Suppose b € Z(a), {a} ~ {a,b} ~ {b}, and d € S(c). Then:

(v-a) C ({a,b}) = {a} implies {bac,aad} - A ~ {a} a{c,d} = {aac, bad}.
(v-b) C ({a,b}) = {a,b} implies A ~ {a} a{c,d} ~ {aac,bad}.

We now construct v and w. For any a € A, let u(a) = Vps ({a}). By nondegeneracy
(Definition [5)), there exist z,y,y’ € A such that y € P(z) and v € S(z). Below, we fix such
x,y,y". Note there exists § € (0,1) such that, for all ¢ € A, we have y(1 — d)c € P(x) and
y'(1—68)c € S(x) (see Lemma [S28). By Axioms [3 and [6| we have {z,y(1 — d)c} > {z} and
{z,y/(1 = 6)c} = {x} (see Lemma [S2F)). Now, define wp and wg by

=i ({2,5) — Vs ({e})

Vs (1) = Vs ({e)).

wp(c: 2,1, 6) = %VPS (o, y(1 — 6)c}) —

ws(es 2,4/,0) = 5Vs ({2, /(1 = d)c}) -

wp(c; x,y,0) measures how the utility changes as the reference alternative x is moved slightly
toward ¢, keeping the ex post choice constant.wg(c;z,7/,d) is interpreted analogously. The
next two lemmas show some properties of wp and wg, including its linearity and independence
of the specific choice of z,y,y’ € A. Proof is in Supplemental Appendix [S.C]|

Lemma 7. Suppose Azioms[}{(] hold. If y(1 — &)c € P(z) for all c € A, then the following
statements hold.

(i) If c € P(z) , then wp(c;x,y,0) = Vs ({x,c}) — Ves ({c}).

(i1) wp(z;z,y,8) = 0.

(11t) wp(cad;z,y,0) = awp(c;z,y,0) + (1 — a)wp(d;z,y,9) for any a € (0,1).

(v) wp(c;x,y,8") = wp(c;x,y,9) for any & € (0,9).

(v) Suppose b(1 — §)c € P(a) for all ¢ € A. Then wp(c;z,y,0) = wp(c;a,b,d) +

wp(a;z,y,0).
Similarly, we have the following result. The proof is analogous, hence omitted.

Lemma 8. Suppose Azioms [I{¢] hold. If y'(1 — 6)c € S(x) for all ¢ € A, then the following
properties hold.

(i) If c € S(z), then ws(c;z,y',0) = Vps ({z,c}) — Vps ({c}).
(i1) ws(x;z,y', ) =0.
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(iii) wg(cad;x,y, ) = awg(c;z,y, ) + (1 — )ws(d;x,y', ) for any a € (0,1).
(iv) ws(c;z,y',0") = ws(c;z,y',0) for all ¢ € (0,9).
(v) Suppose b’ € S(a’) for all c € A. Then ws(c;z,y',0) = ws(c;a’, b, 0) + wg(a'; x, Yy, ).

Now, suppose Axiom [7| holds with some « € (0,1). Then, a simple algebra shows that
= é — 1 > 0 satisfies %wp(c;x,y,é) = wg(c;z,y',0) = w(cx,y,y, ) for all ¢ € A (see
Lemma [S29)). We first show that the representation holds for binary menus that include z.

Lemma 9. Suppose Azioms []§ hold. Consider z,b € A such that r(z) > r(b) and
Vps ({x,b}) > Vps ({x}). Suppose y(1 — d)c € P(x) and y'(1 — d)c € S(x) for all c € A.

Then Vpgs 1s expressed as

Vps ({x,b}) = max g (¢, max w(c;z,vy, ',5)
p (0] = mx g (e, max (o 0'0)

and C ({x,b}) coincides with Cps ({z,b}) = arg maxee(zy g (¢, maxeey, (zpp) w(s 2,9, y',6)) |
where g(c, R) = u(c)—max {R — w(c;z,y,y’,6), 0}+Bmax {w(c;z,y,y',0) — R,0} and p, (A) =

argmaxy r.

Proof. Note Vpg ({z,y(1 —d)c}) > Vps({z}) and Vps ({z,y' (1 —d)c}) > Vps ({z}) by
Axioms [3| and [f] (recall Lemma [S25)). Consider the following exhaustive cases.

Case 1. Suppose b € P(x), so that C ({z,b}) = {b} by definition. Note Vpg ({z,b}) >
Vps ({z}) by Lemma [S25] By Lemma [7|i)(ii) and b € P(z), we have w(b;z,y,y,0) —
w(z;z,y,y',0) = %wp(b;x,y,cg) = % [Vps ({x,b}) — Vs ({b})] > 0. Therefore,

g (b, m(a{xb})w(C’; Y,y 5)) =u(d) + Blwb;z,y,y,0) —w(z;z,y,y,90)]
deor({z,

= Vps ({7, b})

> Vps({z}) =g (!E max w(C’;fv,%y’ﬁ)) :

c'epr({z,0})
Thus, the conclusion holds.
Case 2. Suppose b € S(z), so that C ({z,b}) = {b}. By Lemma [§i)(ii) and b € S(z),
w(b;z,y,y,0) —w(z;z,y,y,0) = ws(b;z,y, ) = Vps ({,b}) — Vps ({b}) < 0. Therefore,
9 (b, max w(C’;x,y,y’,5)) = u(b) + w(bsz,y,9',6) — w(z;2,y,y',0)
C'Ewr({%b})
= Vps ({2,0})

> Vps ({z}) = 9 (x max w(C’;x,y,y’yé)) :

¢ €pr({z,b})
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Case 3. Suppose b € N, (), so that C ({z,b}) = {b}. Letting A’ = {z,y'} (1 —0) {z,b},
Lemma [0fii) and {z,b} ~ {b} imply w(b;z,y,y,0) — w(z;z,y,y,0) = ws(b;z,y,0) =
+ [Vps (A') — (1 = 0)Vps ({z,y'}) — 6Vps ({b})] = 0. Therefore,

¢ cpr({z,b})

g(b, i w(c';x,y,y',a>) — Vs ({b}) = Vs ({z,5))

> Ves (o) = (o, e (i)

¢ epr({z,b})

Case 4. Suppose b € N(x), so that z € C ({z,b}). By Lemma [S25 Vpg ({z,b}) =
Vps ({x}). Consider first the case where w(b; x,y,y’,d) > 0. By Axiom(iii), Vps ({z,y(1 — 0)b})—
3V ({2, y})—Ves ((0}) = wp(552,5,6) > 0 = s ({5} (1 — ) {5}~ 5 Vs ({, y}) -
Ves ({b}) , 50 Ves ({z,y(1 — 0)b}) > Vps ({z,y} (1 — &) {b}), which together with Axiom [f|(ii-
a) implies C (4) = {y} (1 — 6)C ({z,b}) where A = {z,y} (1 — &) {z,b} ]| Then, by Axiom
6i), {z,y(1—d)a} ~ A = {z,y(1—6)b} and the latter relation is strict if and only if
C ({z,b}) = {x}. Therefore,

1
b, max w(cd;z,y,vy,0)) =ub)+ L -=wp(b;z,y,0
g( onax (¢52,9,y )) (0) + 8 5 p(b;z,y,0)
1-9

Vs ({51~ 0)}) — = "Vis ({,5})

Vps ({x}) = Vps ({2,b}) = ¢ (x max w(c/;fv,y,z/ﬁ))

¢ €pr({z,b})

IA

where the inequality is strict if and only if C ({z,b}) = {x}. Next, consider the case with
w(b;z,y,y’,d) < 0. By Axiom (iii), Wps ({z,y/(1 = 0)b}) — F52Vps ({z,y'}) — Vps ({b}) =
ws(b;z,y,6) < 0 = $Vps ({2, ¢/} (1 —6){b}) — 52Vps ({z,y'}) — Vs ({b}), so we have
Vs ({z,y'(1 = 6)b}) < Vps ({z,y'} (1 — &) {b}), which together with Axiom [j|(ii-b) implies
C(A) ={y'} (1-6)C ({x,b}) where A’ = {z,y'} (1—0) {z, b}. By Axiom[6[i), {z,v/(1 — &)z} ~
A" = {z,y'(1 — 0)b} and the latter relation is strict if and only if C ({x,b}) = {x}. Therefore,

g (b, max w(c';x,y,y',6>) —u(b) + ws(bi 2,4, 0)

c'epr({x,b})

1 1—46
o) )

Vos ({2}) = Ves ({2,5}) — ( max  w(c; 2.y, 5>>

Vps ({z,4'})

< Vs ({z,y/(1 = d)z}) —

' €pr({z,b})

where the inequality is strict if and only if C ({z,b}) = {x}.
Case 5. Suppose b € Z(x) and Vpg ({z,b}) > Vps ({z}). Note C ({z,b}) = {b} by Axiom

32To apply Axiom (ii), recall C({z,y(1 — d)c}) = {y(1 — §)c} for all c € A.
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6l and Vps ({z,y'(1 —0)b}) > Vpg (A') by Lemma [6{iii), where A’ = {z,y'}(1 — &) {z,b}.
Now, by Lemma[2} Vps ({b}) > Vps ({z,b}). Consider first the case Vpg ({b}) = Vps ({z,b}).
Then, Veg ({2,y'(1 = 0)b}) = (1 = 0)Ves ({2,4'}) + 6Vps ({2, b}) = (1 = 0)Vps ({z,y'}) +
dVps ({b}), so w(b;z,y,y’,0) > 0 =w(x;x,y,y,d). Thus, noting ¢, ({z,b}) = {x,b},

g (b, max w(C’;x,y,y’ﬁ)) = Vps ({0})

¢ €pr({z,b})

= Vps ({z,b}) > Vps ({z}) > ¢ (x, max w(c’;az,y,y’,é)) )

¢ €pr({z,b})

Next, consider the case Vpg (b) > Vpg ({z,b}). By Lemma [0iii), Vps ({z,v/(1 — d)b}) =
Vps (A') . Therefore, w(b;x,y,y’,d) = 15;5‘/1’5 ({z,y'}) + Vps ({z,b}) — 1T’5VPS ({x,y'}) —
Vps ({b}) < 0 =w(z;2,y,y, ). Thus,

g <b max w(c’;x,y,y',5)> =u(b) + wb;z,y,y,9)

" e ({,b})

=Vps ({x,b}) > Vps ({z}) =g (x, max w(c’;m,y,y',5)> )

epr({z.b})

Case 6. Suppose b € Z(z) and Vps ({b}) > Vps({z,b}) = Vps({z}). Note z €
C({z,b}) [ Then, by Lemmal6{iv), Ves ({z,y'} (1 — &) {z,b}) > Vps ({x,y'(1 — §)b}). There-
fore, we have w(b;z,y,vy',0) < +Vps {z,y'} (1 — ) {z,b}) — 1T"SVPS ({x,y'}) — Vps ({b}) <
0=w(z;x,y,y,0), so

g <b, max w(c’;x,y,y',5)> = u(b) +w(b;z,y,y,0)

¢ €pr({z,b})

< Vs (.} (01— 0) (. )) — +"Vos ({z./))
— Vi (00)) = Vs (Ga}) =g (., max, wlcior'0)).

By Lemma [f](iv) the inequality is strict if and only if C ({z,b}) = {x}.

Case 7. Suppose b € Z(x) and Vpg ({b}) = Vps ({z,b}) = Vps ({z}). If C ({z,0}) = {=},
then by Lemma@(v—a), we have w(b; z,y,y',6) < +Vps ({z,y'}(1 — 0){z})—52Vrs ({z,y'})—
Vps ({b}) =0 = w(x;z,y,y,d). Therefore,

g <b7 max ’U)(Cl;x,y,yl,(S)> = VPS ({b}) +w(bﬂxay7y/75)

¢ €pr({z,b})

< Vps ({z,b}) = Vps ({z}) =g (x, max w(c’;m,y,y',5)> )

¢/ €pr({z,b})

33{b} = {x,b} implies x =, b. Then, Axiom@ and{z} ~ {x,b} imply = € C({z,b}).

36



If C ({z,b}) = {b}, then Lemma @(v—a) implies w(b; z,y,y',8) > $Vps ({z,y'}(1 — §){b}) —
52Ves ({2,y'}) = Vs ({b}) = 0 = w(z; 2, 9,4/, ), so0

g (b, max  w(ciz,y,1. 6)) — Vs ({8)
c'epr({x,b})
- VPS ({:L‘, b})

> Vpg ({2}) —w(b;x,y,y',0) =g (w max w(C’;:v,y,y’ﬁ)) :
CIEQDT({mﬂb})

Finally, if C ({x,b}) = {z, b}, then Lemma@(v—b) implies w(b; x,y,y',0) = %VPS ({z, vy} 1 —0){z})—
=0Vps ({z,y'}) — Vs ({b}) = 0, so the desired representation holds.

Case 8. Suppose b € Z(z) and Vps ({z}) = Vps ({x,b}) > Vps({b}). Note that
Axiom [6] implies C ({z,b}) = {=}f] By Axiom [ {2} ~ {z,b}6{z} = {b}5{z}, so
z >y (1 — 6)b by definition. Thus, Axioms [3{i) and [6{i) imply {z,z(1 —6)b,y/(1 — &)b} =
{z,y' (1 —=0)b}. Also, C ({z,y'(1 —0)b}) = {y/(1 — )b} by construction, and Axiom [§] im-
ply ¢ C ({z,z(1 — )b, y'(1 — &)b}). Therefore, by Axiom [[ii), {z(1 — 8)b,y'(1 — &)b} >
{z,2(1 —0)b,y/'(1 — 9)b}. Combining these results, {z,y'}(1—-0){b} = {z,y'(1 — §)b}. Then,
w(bsz,y,y',0) < §Ves ({2, y'} (1= 0) {b})—52Ves ({2, '} —Ves ({b}) = 0 = w(z; 2.y, 9),
S0

g (ba max w(c/;xay7y/75)> = VPS ({b}) +w(b7x7yay/76>
c€pr({z,b})
< VPS ({I‘, b})

~Ves () =g (o, max, wlinp/0)). O

c€pr({z,b})
Next, we prove that the representation holds for an arbitrary binary menu {a, b}.

Lemma 10. Suppose Azioms[I{§ and nondegeneracy hold. Then there exist continuous and

linear functions u, w and r such that Vpg is expressed as

Vps ({a,b}) = max g | ¢, max wc’)
PS({ }) cE{a,b}g( cepr({a,b}) ( )

and C ({a,b}) coincides with Cps ({a,b}) = argmax e(qp} g (¢, maxuey, (fapy) w(¢')) , where
g(c, R) = u(c) —max{R — w(c),0} + fmax{w(c) — R,0} and ¢,(A) = argmax, 7.

Proof. As above, let u(a) = Vps({a}) and let r be the linear function that represents >,..
Take z,y,y" € A such that y € P(x) and v’ € S(x), which exist by nondegeneracy. Note
that we can take some § € (0, 1) such that y(1 — d)c € P(z) and y'(1 — §)c € S(x) for all

341f b =, @, use Axiom |§|(1) and {z,b} = {b}. Otherwise, use Axiom @(ii) and {z,b} >~ {b}.
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¢ € A (see Lemma [S2§i)). Now, consider an arbitrary set {a,b}. First, consider the case
a,b € int(A). Without loss of generality, suppose r(a) > r(b) and Vps ({a,b}) > Vps ({a}) ]
Because a € int(A), there exist @ € A and a € (0,1) such that a = aax. Define z = aay
and 2’ = aay’. By Lemma[S2§{(ii), we have z € P(a) and 2’ € S(a). Then, by Lemma [S2§]i)
there exists ¢’ € (0,1) such that z(1 — ¢')c € P(a) and 2/(1 — ¢')c € S(a) for all ¢ € A.
Then, by Lemma |§|, we have Vpg ({a,b}) = maxcefap) g (c, maxde(pr({a,b})w(c’;a,z,z’,é’))
and C ({a,b}) = arg max,e(a} 9 (¢, maxpey, (fapp) w(csa, 2, 2',8")) . Now, let §* = min {4, d'}.
Then, by Lemmas [7| and |8 we have w(-;z,y,v,0) = w(-;z,y,y,0"), w(;a,z2,0") =
w(+;a,z,2,0%) and w(-;a,z,2',0%) = w(;x,y,y,0%) + k for some constant k. Therefore,
defining w(-) = w(-;z,y,y, d) yields the conclusionﬁ
Next, suppose a € A and b € int(A). Because aab € int(A) for a € (0, 1),

v b,b}) = /
ps ({aab, b}) nax, g (c, c/e@f?{%}éb,bpw(c))

< aVps ({a,b}) + (1 — a)Vps ({b}) = acggfg}g (c, c’egg{ﬁ,b})w(do + (1 — @)u(b).

where the right-hand side follows from linearity (cf. the proof of the necessity of Axiom[d](iii)).
Letting o — 1 yields the conclusion for Vpg. The conclusion for Cpg is obtained analogously

using Axiom [5| Proof for the general case with a,b € A is now straightforward. ]
We now extend the representation to any finite menus.

Lemma 11. Suppose Azioms[I§ and nondegeneracy hold. Then there exist continuous and

linear functions u, w and r such that, over finite menus, Vpg is expressed as

Vps (A) = maxg (c, max w(C'))

ceA ' epr(A)

and C(A) coincides with Cps (A) = argmaxcea g (¢, maxwey, (ayw(c')) , where g and ¢ are
defined in Lemma [10.

Proof. Take any finite set A. By Eq., Lemma and the property that R > R’ implies
g(c, R) < g(c, R') at each ¢ € A, we have

Vps (A) = min max Vpg ({a,b})

bep,(A) acA

= min max max g(c, max w(c'))
bepr(A) a€A ce{ab} c€pr({a,b})

351f r(a) > r(b), then Lemma [2[i) implies Vpg ({a,b}) > Vps ({a}). If r(a) = r(b), then Lemma [2(ii)
implies Vpg ({a,b}) > Vps ({a}) or Vps ({a,b}) > Vps ({b}), so the assumption is without loss of generality.
36Note that k is differenced out in g, and that (z,y,y’,d) does not depend on (a,b).
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= min maxmax{g (a, max w(c’)),g(b, max w(c’))}
bepr(A) acd cepr({ab}) cepr({ab})

= min maxg <a, max w(c’)>
bepr(A) acd cegr({ab))

= max g <a, max w(c’)) :

acA depr(A)

where the fourth equality holds because b € ¢,.(A) implies max,e 4 g (b, MaXy ey, ({ab}) w(c’)) <
g (b,w(b)) < maxaea g (@, maxpey, ({apy) w(c)).

To prove the result on C, we first introduce some lemmas. Lemmas [12| and [14] establish
Lemma [I5] which then establishes Lemma

Lemma 12. Suppose Axioms hold. If r(a) = r(b) and w(a) > w(b), then a =, b.

Proof. Consider the following exhaustive cases. (Recall that, by Lemma , the representa-
tion holds for binary menus.)

Case 1. Suppose u(a) + w(a) < u(b) +w(b). Then Vpg ({a,b}) = u(b) + w(b) — w(a) <
Vps ({b}), so a >, b.

Case 2. Suppose u(a)+w(a) > u(b) +w(b) and u(a) < u(b). Then Vpg ({a,b}) = u(a) <
Vps ({b}), so a =, b.

Case 3. Suppose u(a) +w(a) > u(b) +w(b) and u(a) = u(b). Then Vpg ({a,b}) = u(a) =
Vps ({b}) and C ({a,b}) = {a}, so a =, b.

Case 4. Suppose u(a) + w(a) > u(b) + w(b) and u(a) > w(b). Then Vps({a}) =
Vps ({a,b}) > Vpg ({b}). This, together with a ~, b, implies a >, b. O

Lemma 13. Suppose Axioms hold. If y € P(x), then r(x) > r(y) and w(z) < w(y).

Proof. By assumption, we have r(z) > r(y) and g(y,w(z)) = Ves({z,y}) > u(y) =

U

g(y,w(y)), the latter of which implies w(z) < w(y).

Lemma 14. Suppose Axioms -@ and nondegeneracy hold. Then, for any a,b € A, r(a)
r(b) and a # b imply w(a) # w(b).
Proof. By Lemma [L3] 7(z) > r(y) and w(z) < w(y) for some z,y € A. If 7(a) = r(b) and

w(a) = w(b) for some a # b, then the indifference curves for r and w are parallel straight

lines, which contradicts r(x) > r(y) and w(z) < w(y). O

Lemma 15. Suppose Azioms and nondegeneracy hold. Then, for any A € A and any

b € argmaxeey, 4y w(c'), we have b=, a and b =, a for all a € A.

Proof. Take any a € A\ {b}. Because b € ¢,(A), b =, a. If a ¢ ¢,(A), then b >, a, so
Axiom [3(i) implies b =, a. If a € ¢,(A), then r(a) = 7(b) and w(a) < w(b) by definition.
By Lemma [14] w(a) < w(b). Thus, b =, a by Lemma[12] O
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Proof of Lemma Continued. We show C(A) = argmaxcea g (¢, maxye,, (4 w(c)) by
showing each inclusion.

Step 1. Take a € argmax.ca g (c, maxcxeg,r(A)w(c’)), b € argmaxyc,, (4 w(c), and d €
C (A). By the first half of Lemma [11f and max.ey, (a) w(c') = maxeey, (ap,ap) (') = w(b),
we have {a,b,d} ~ A. Also, Lemma (15| implies b =, o« and b =, a’ for all a’ € A. Thus,
by Axiom [§ d € C ({a,b,d}). Also, by the representation and Lemma [10] we have {a,b} ~
{a,b,d} and a € C ({a,b}). By Axiom [f]i), we have a € C ({a,b,d}) or b € C ({a,b,d}), so
Axiom [§ implies a € C ({a,b,d}). Thus, again by Axiom[§] a € C (A).

Step 2. Suppose d € C(A). Take a € argmax.cag (c, MaXycy, (A) w(c’)) and b €
argmaXy ey, (4) w(c'). By Lemma , we have b =, a’ and b =,, a' for all ' € A. Also, by Step
1, we have a € C ({a,b,d}). Thus, Axiom [§|implies d € C ({a,b,d}). By Axiom|6i), {b,d} ~
{a,b,d}. By the representation and the definition of @ and b, we have max c.qy g (¢, w(b)) =
MaXce {a,b,d} 9 (¢, (b)) = maxcea g (¢, w(b)). By Axiom [§ we have d € C ({b,d}), so Lemma
implies d € argmax eqpa; ¢ (¢, w(b)). Thus d € argmaxcea g (¢, maxpe,, (ayw(d)). O

To complete the proof of the sufficiency part of Theorem [I| we use the following result.

Lemma 16. Suppose Axioms hold. Suppose that for any A € A, there exists a finite
subset A" of A such that (i) maxar = maxa r and (ii) for any finite A” such that A’ C A" C
A, A" ~ A", Then we have A ~ A’.

Proof. Note that there exists a sequence of finite subsets { A,,}°2; of A such that dgy(A,, A) —
0 as n — oo by Lemma 0 in GP. By (ii), A’ ~ A, UA  for all n, so A’ 2 AUA" = A by

Axiom (1) To show the opposite relation, note that since A is compact, for every € > 0,

there are finite zy,--- ,x, € A such that A C U N(z;,¢€). If (A UN(z;,¢))NA > A for all
i=1,---,n, then iteratively applying Lemma (ii) yields A = U [ {(A"UN(z,¢))NA} = A,

a contradiction. Therefore, A 7= (A’ U N(2/,¢)) N A for some 2’ € A. Thus, we can take a

sequence {z,}52; in A such that A 5 (AU N(z,, 1)) NAforalln =1,2,---. Since A is
compact, there exists a subsequence {z,, }32, such that z,, — z* € A. Then letting k — oo
yields A 7 A’ U {z*} ~ A’ by Axiom [2[i). O

Proof of Theorem[]] (Sufficiency), Continued.

Take any closed set A € A, and take a* € argmax.cag (c, maXC/E@T(A)w(c’)) and b* €
arg maxye,, (4) w(¢). By construction, maxq« -y 7 = max, r. By Lemma [l {a*,0*} ~ A"
for any finite A” such that {a*,b*} C A” C A. Therefore, by Lemma we have A ~ {a*,b*}.
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Thus, defining

Vis (4) = Vs (f0"0) = s o (e, _max - u(e)) =g (o max, ().

cef{a*,b*} depr({a*,b* ceA c'epr(A)

Vpg represents = on A. Also, following the argument for the proof of Lemma [11], we obtain
C(A) = Cps (A) = argmax,ea g (¢, maxye,, (4) w(c)).

Finally, by construction, f = i — 1 if the DM is a-sensitive to shame. Thus, the DM is
shame-averse (o > 1) if and only if 3 < 1, shame-neutral (o = 1) if and only if 8 =1 and

shame-loving (a < %) itandonlyif 5 >1. O

A.2 Proof of Theorem 2|

We first introduce two lemmas. Lemma [17]is used to prove Lemma [18] which in turn helps
us establish r(a) > r(b) < a =, b.

Lemma 17. Suppose the data are generated by a weakly nondegenerate PS preference. Then,

the following sets are nonempty for all a € int(A):

Pi(a)={ce A:r(a) >r(c) and g(a,w(a)) < g(c,w(a))} (12)
Pya)={ce A:r(a) >r(c) and w(a) < w(c)} (13)

Proof. Take a,b € A such that @ =* b. Then, there exist A 3 b and ¢ # @ such that AU{a} >
A,a¢ C(Au{a}), and c € C(AU{a}). The first two conditions imply ¢,.(AU{a}) = {a}
and w(a) = maxye,, (aufay) W(Y) < Mmaxye,, () w(y) (see Lemma [S30). Thus, there is d € A
such that w(d) = maxyc, 1y w(y) > w(a) and r(d) < r(a), implying d € Py(a). We
additionally have ¢ € C (AU {a}), so g(c,w(a)) > g(a,w(a)), hence ¢ € Py(a).

Now, take any a € int(A). There exist & € (0,1) and e € A such that a = aae. By
the linearity of u, w, and r, we have r(a) > max {r(cae), r(dae)}, g(cae,w(a)) > g(a,w(a)),
and w(a) < w(dae). Therefore, cae € Py (a) and dae € P, (a). O

¢ € Pi(a) is an alternative which is below a in the descriptive norm ranking r but which
is a choice preferred to a. d € Py(a) is an alternatives which is below a in the descriptive
norm ranking but above a in the prescriptive norm ranking w. Therefore, if d € AN Py(a)
sets the reference point at a menu A and a sets the reference point at A U {a}, then the
latter reference point is lower than the former. Moreover, if ¢ € AN Pi(a), then a is not
chosen from A U {a}. Such c,d are key to establishing r(a) > r(b) = a >=* b for “generic”
cases. Lemma [1§] formalizes the idea. See also the graphical illustration in Figure and
discussions in Appendix [S.D]
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Lemma 18. Suppose the data are generated by a weakly nondegenerate PS preference. Then,
for any a,b € A, a =* b implies r(a) > r(b). Moreover, if a € int(A), then r(a) > r(b)

implies a >=*b.

Proof. Suppose a >=* b, so that we have A 5 b such that AU {a} = A and a ¢ C (AU {a}).
Then, we must have ¢, (AU {a}) = {a} (see Lemma[S30)), hence r(a) > r(b). Next, suppose
a € int(A) and r(a) > r(b). By Lemma[17] there exist ¢ € Py(a) and d € P»(a). Note that
d € P, (a) implies daa € P, (a) for all a € (0,1). Therefore, we can assume without loss of
generality that r(a) > r(d) > max {r(b),r(c)}. Then, defining G(A, R) = max.ca g(c, R),

Vps ({a,b,¢,d}) =G ({a, b,c,d}, max )w(y)) =G ({b,c,d} ,w(a))

y€pr({ab,c,d}

> G ({b,e,d} ,w(d)) = Ves ({b, ¢, d})

where the inequality follows from G(A, -) being strictly decreasing, and the second equality
follows from g(a,w(a)) < g(c, w(a)), which also implies a ¢ C ({a, b, c,d}). Thus, a =*b. O

Proof of Theorem[9, Continued.
(i) Suppose first r(a) > r(b). Take some ¢ € int(A) such that 7(a) > r(c) > r(b)f7] By
Lemma [18 ¢ >* b. Also, if ¢ >* a, then r(c) > r(a) by Lemma [18, a contradiction.
Therefore, ¢ #* a, hence a >, b. Next, suppose a >, b, so that we have ¢ ¥* a and ¢ =* b
for some ¢ € int(A). By Lemmallg§] r(c) > r(b). Also, if (c) > r(a), then ¢ =* a by Lemma
[18| a contradiction. Thus, r(a) > r(c) > r(b).

(ii) By inspection, a >, b implies w(a) > w(b) (see Lemma [S31]). The converse can be
established by following the proof of Lemma @ m

A.3 Other Proofs
A.3.1 Proof of Proposition

It is easy to show that (ii) implies (i), so we only prove that (i) implies (ii). Let Vpg and Vjg
denote the PS representations of > using (u,w,r, 8) and (v, w’, 7', 5’), respectively. Since
Vps is unique up to positive affine transformation, u'(z) = Vig({z}) = 0Vps({z}) + 7 =
Ou(z) + 7, for some # > 0 and ~, € R. Now, by nondegeneracy and Lemma , there exist
xz,y € A and § € (0,1) such that y(1 — )z € P(z) for all z € A. By the representation, we

3TTake ¢’ = aab for some o € (0,1). If ¢’ € int(A), let ¢ = ¢/. Otherwise, take some d € int(A) and let
c = ' fd where B < 1 is sufficiently close to 1.
38Note that the proof depends on the representation and not on any axiom.
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have

5

Ves({z,y}) = < {U(y(l —0)2) + Blw(y(l - 6)z) —w(x)[}

® (uy) + Blw(y) — w(@)])
= u(z) + pw(z) — pw(x).

SVis({ay(1 = 8)2)) -

Therefore, for any z € A,

(=) + Bl () — 0! ()] = Vs (G, y(1 = 5)2)) — = Vi (fr0))
= % 0Vps ({z,y(1 —0)2}) + ) — 1%5 [0Ves ({2, y}) + 7l
= 0| $Vis (fa,9(1 = 9)2}) — *= Vs ({r.u)]| + 7%

)
= 0 {u(2) + Plw(z) —w(@)]} + 7.

Since u/'(2) = Ou(z) + vy, we have w'(z) = bw(z) — w(x) + w'(z) = Ow(z) + . Next, by
Theorem , both r and r’ represent .., so Lemmaimphes r" = 0,7+, for some 6, > 0 and
v € R. Finally, by Axiom |7 there exists a unique a € (0, 1) such that, for any a,b,c,d € A
with ¢ € P(a) N P(b) and d € S(a) N S(b), we have {a,c}a{eb?} ~ {b,c} a{e®?}, where
{ebd} ~ {b,d} and {e*?} ~ {a,d}. By the representation, we have

Vps ({a,cya{e™}) = aVps ({a,¢}) + (1 — ) Ves ({™})
= aVps ({a,c}) + (1 — a)Ves ({b,d})
= a{u(e) + Blw(c) — w(a)]} + (1 — a){u(d) + w(d) — w(b)}

and similarly Vpg ({b cta {ea’d}) = a{u(c)+ Blw(c) —w(b)]} + (1 — a){u(d) + w(d) —w(a)}.
Since these values are equal for any a,b € A, we must have 1 —a —aff =0, ie., a = LB

Because the two representations must represent the same (>=,C), we have § = /3.

A.3.2 Proof of Proposition [2|

Equivalence of (i) and (ii) follows from «; = ﬁ (see the proof of Proposition . To
show the equivalence of (ii) and (iii), note that if DM i is «;-sensitive to shame, then the

representation implies

| Vis ({a.d}) ~ Vis (b))
Vs ({0, 1) — Vis (b)) + Vi ({a,d}) — Vi ({0:43)

o; =
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Then

{b,c} {e?’d} =i {a,cla {ef’d}
& aVis ({a,c}) + (1 — a)Vig ({b,d}) < aVig ({b.c}) + (1 — a)Vps ({a, d})

& a < .

Therefore, a; > (>)ay if and only if {b, ¢} « {eg’d} =2 {a,c}a {eg’d} implies {b, ¢} « {e‘f’d} 1
(1) {a,c}a{el{’d}. O
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S.B Other Predictions from the Simple Model

In Section [2.1], we present a simple PS model of prosocial behavior and show its insightfulness.
In this section, we discuss additional implications of the model, such as conformative versus
pride-seeking behavior, and boomerang effects.

Recall that z = 1 denotes engaging in prosocial behavior, and x = 0 denotes non-
engagement. Private and social payoffs are in conflict: u(0) =@ > 0 = u(1) and w(0) =0 <
w = w(l), with fw < 2 < w. At menu {0, 1}, the DM chooses an action by comparing the ex
post utility of action 0, U(0;{0,1}) = . —w(p,({0,1})), with that of action 1, U(1;{0,1}) =
B w —w(e-({0,1}))]. We compare decisions in the benchmark case 7(0) > (1) (prosocial
behavior is perceived as uncommon) with those in the post-intervention case 7/(0) < /(1)

(prosocial behavior is perceived as common).

Conformity and pride seeking. The DM conforms to the reference alternative both in
the benchmark case (z = ¢,({0,1}) = 0) and post-intervention case (z = ¢,~({0,1}) = 1).
By contrast, if we modify the benchmark assumption so that fw > @, then the DM engages
in prosocial behavior under both scenarios. In the modified benchmark, the DM deviates
from the reference to seek pride. Thus, our model can produce conformative or pride-seeking
behavior depending on 5. Typical empirical findings suggest 3 is small (see footnote ;

still, in some contexts, individuals may seek to perform better than a natural reference point.

Boomerang effect. In a field experiment on electricity consumption, Schultz et al.| (2007))
find that providing descriptive information on neighbors’ electricity usage led to desired elec-
tricity saving by high-consuming households but increased consumption by low-consuming
households. To explain the latter result (which [Schultz et al.| (2007)) call a “boomerang ef-
fect”) without complicating the model, let = 0 and x = 1 denote high consumption and
low consumption of electricity, respectively, and suppose that the low-consuming households
originally perceive norms (w,r’) but the intervention updates the perceptions to (w,r). By
the analysis in Section [2.1] the low-consuming households originally choose x = 1 but the
intervention causes them to switch to x = 0. Thus, our model can explain the boomerang
effect by a shift of the perceived descriptive norm toward higher consumption.

The purpose of the above example is to illustrate the importance of considering the per-
ceived norms of individuals when introducing a policy, rather than develop a more thorough
model. For example, the reduction in the electricity consumption by high-consuming house-
holds can be explained by the opposite shift in the perceived descriptive norm. Instead of

developing a model which accommodates both types of households (possibly requiring more



than two options), we note that even the direction of a policy effect, as well as its magnitude,

crucially depends on what norms the households perceive prior to the intervention.

S.C Supplemental Proofs

S.C.1 Supplemental Proofs for Theorem (1| (Sufficiency Part)
S.C.1.1 Supplemental Results for Lemma

Lemma S19. Suppose Am’oms and@ hold. Then, for any a,b,c € A and o € (0,1), a =* b

implies acc =* bac.

Proof. By definition, we have AU {a} = A and a ¢ C(AU{a}) for some A > b. Then,

mixing each term with {c} with mixing rate « yields the result. O]

Lemma S20. Suppose Axioms hold. Then, the following statements hold.

(i) If a =* b, then for any ¢ € A, there exists o € (0,1) such that acc =* b for all
a € (af,1).

(i) If b =* ¢, then for any a € A, there exists 5 € (0,1) such that b >=* cfBa for all
pe(p1).

Proof. (i) By a >=* b, we have AU {a} = A and a ¢ C (AU {a}) for some A > b. By Axiom
[2(i), there exists oy € (0,1) such that AU{acac} = Aforall & € (o, 1). By Axiom 3fiii-b), we
have ay € (0,1) such that acc ¢ C (AU {aac}) for all a € (ag,1). Thus, a* = max{a,as}
has the desired property.

(ii) By b =* ¢, we have BU{b} > B and b ¢ C (B U {b}) for some B > ¢. By Axioms [2(i)
and [3](iii), there exist 31, 82 € (0,1) such that [BB{a}] U {b} = BB{a} for all 3 € (5;,1) and
b C([BB{a}] U {b}) for all B € (B, 1) Thus, b =* cBa for all 8 > B* = max{By, B}. O

Lemma S21. Suppose Azioms -@ hold. If a »=* b holds, then there exists ¢ € int(A) such
that ¢ #* a and ¢ =* b.

Proof. Suppose a =* b. By Lemma we have a >=* a.5b =* b. If a.5b € int(A), then
Axiom (1) implies ¢ = a.5b has the desired property. Otherwise, take any a € (0,1) and
d € int(A), and let ¢ = (a.5b)ad € int(A). Then, by Lemma [S20} we have a =* ¢ =* b for «

sufficiently close to one. O

39To show that the former property holds for all sufficiently large 8 < 1, note first that Axioms i)
and iii—a) ensure BU {b} = B = B where B = B(y) = [BU{b}]yB for some v € (0,1). (Otherwise,
' ={ye0,1]: B> B(y)} and TV = {y € [0,1] : B(y) = BU {b}} are nonempty closed sets such that
rtur?y =10,1], so B(y) = B(y) for y € T* NIV, a contradiction.) Then, by Axioms i) and iii—a), for
all sufficiently large 8 < 1, we must have [BB{a}] U {b} = B > Bp{a}.
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Lemma S22. If Azioms|[1{J hold, then =, is transitive["|

Proof. Suppose a >, b >, c. By Lemma , we have some d € int(A) such that d #* a and
d>=*b. If d #* ¢, then ¢ >, b, contradicting Axiom (1) Therefore, d =* ¢, hence a >, c¢. [

S.C.1.2 Supplemental Results for Lemma

Below, we impose Axioms [I}f5] so =, admits a linear representation r (Lemma [1]).

Lemma S23. Suppose Azioms[I{J hold. Then, for any finite A € A, there exists a* € A
such that a* =, a and a* >, a for all a € A.

Proof. Because =, is complete by definition and transitive on ¢,(A4) by Axiom [3(ii), there
exists a* which maximizes =, on ¢,(A). By a* € ¢,.(A), we must have a* =, a for all a € A.
Also, for any a € A\ ¢,(4), we have a* -, a, so Axiom [3{i) implies a* =, a. Thus, a* =, a
and a* =, a for all a € A. O

Lemma S24. Suppose that Azioms[1{6 hold and that A and B are finite.

(i) If A= AU B, there isb € B\ A such that b >, a or b >, a for all a € A.
(i) If AUB = A and C (AU B)NA # 0, there isb € B\ A such that b =, a for all a € A.

Proof. Note that by the hypotheses, A A B holds for (i)(ii).

(i) By Lemma , there exists a* € A such that ¢* =, ¢ and a* =, a for all a € A. To
prove the contrapositive, suppose that for any b € B\ A, there exists a € A such that a >, b
and a =, b. By transitivity and Axiom (i)(ii), a* >, cand a* =, cforall ce€ AUB. Thus,
Axiom [f[(i) yields AU B > A.

(ii) If the conclusion is false, then we have a* € A such that a* =, ¢ for all c € AU B and
a* =, cforall c € A. If a* =, b for all b € B, then by Axiom [[i), it is impossible to have
AUB > A and C (AU B)N A # () simultaneously. If b >, a* for some b € B, then Axiom

[6(ii) yields the same conclusion. O

S.C.1.3 Supplemental Results for Lemma

Lemma S25. Suppose Azioms[d(i) and[6(i) hold. Then, b € P(a) U S(a) UN;(a) implies
{a,b} = {a}, and b € Ny(a) implies {a,b} ~ {a}.

Proof. If a >, b, Axiom [3{i) implies a =, b. Then, Axiom [6{i) yields the conclusion. O

Lemma S26. Suppose Azioms hold. If {c,d} € Bg, then {c} = {c,d} or {d} = {c,d}.

40Tn fact, Axioms (i)(ii) are enough to show the transitivity of >,, with a longer proof.




Proof. The conclusion trivially holds if ¢ = d, so we assume ¢ # d. Without loss of generality,
let ¢ =, d. If d € §(¢) UNi(c), then {d} > {c¢,d} by definition. If d € Z(c), then Lemma
2(ii) implies either {c} = {c,d} or {d} = {c,d}. O

Lemma S27. Suppose Azioms hold. If A € AsU Ay, then A ~ {e} for some e € A.

Proof. If A € Ay, then the conclusion follows from Lemma Suppose A € Ag. Note
that iteratively applying Lemma |2 yields A = {a} for some a € A.ﬂ If A~ {a} for some
a € A, the conclusion holds. Next, suppose {a'} > A > {a} for some a,a’ € A. Then,
because {a},{a'},A € Ag, we have V¥ ({a'}) > VI (A) > V5 ({a}). By linearity, there
exists a € (0,1) such that V® ({daa}) = oV ({d'}) + (1 — a)V? ({a}) = VI (A). Thus,
{d’aa} ~ A. Finally, to see that A > {a} for all @ € A does not occur, recall we can write
A= 2%21 am {@1m, azm } where {ay,, as,} € Bs and Z%ﬁl a,, = 1. By Lemma , there
exist (em)MA with e, € {aim, asm} for each m, such that {e,,} = {aim, asm}. By Axiom ,

m=1’

we have {S°M4 a,e,} = A O

S.C.1.4 Supplemental Results for Theorem [1| (Sufficiency), Continued

Proof of Lemmal[fl (i) By Axiom [5{i), C ({a,b} a{c,d}) = {bad}. Also, by the linearity of
r and Axiom [3(i), we have r(aac) > r(z), hence aac =, z, for all z € A\ {aac}. Therefore,
Axiom [(](i) implies A ~ {aac, bad}.

(ii) The same argument as (i) yields the result.

(iii) Let Vpg be a function that represents »= over finite menus in A. By Eq.,
there exists z € A such that Vpg(A) = min.ic,,a) Vps ({2,2'}). If 2 = aac, then by
aac € ¢, (A) and Axioms[3(i) and [6](i), we have Vpg (A) < Vpgs ({aac}) < aVps ({a,b})+(1—
a)Vps ({¢,d}) = Vps (A), a contradiction. If z = aad, then Vpg (A) < Vpgs ({a} a{c,d}) <
Vps (A), a contradiction. A similar contradiction results if z = bac. Thus, Vps(A) =
min.e,, 4y Ves ({bad, 2'}) < Vpg ({aac,bad}) . Now, suppose Vpg (b) > Vpg ({a,b}). Note
we have Vpg (A) = Vpgs ({bad, aac}) or Vps(A) = Vps ({bad, bac}). In the latter case,
Vps (A) = aVps ({b})+(1—a)Vps ({¢,d}) > Vpg (A) , a contradiction. Thus, A ~ {aac, bad}.

(iv) Note we have ¢, (A4) = {aac, bac}. Also, by Axiom [4f(iii), we have {bac} = {aac, bac},
S0 aac -, bac. By Axiom Bfi), aac =, z for all z € A. Also, by Axiom [j(i), C (4) =
C ({a,b}) a{d}. Therefore, Axiom [6{i) yields the desired conclusion.

(v) Let C ({a,b}) = {a}. We first prove the last two relations in (v-a). By Axiom [[i),
C (A) = {aad} and C ({a,b} a{c}) = {aac}. Also, Axiom {| implies {bac} ~ {aac,bac},

“IDenote 4 = {a1,~~~ ,aw} where {a1} = {a2} = -+ = {a|A|}. If aja—1 =+ aja), then Lemma i)
implies {a|A|_1,a|A|} bt {a\A|—1} bt {aﬁu}. If aja) = ajaj—1, then Lemma (1) implies {a|A|_1,a‘A‘} bt

a|A|}. If ajgj—1 ~r aja), then Lemma (ii) implies {a‘A‘,l,a|A|} = {aw}. Repeating similar arguments
yields A = {aw}




S0 aac =, bac. Also, we have aac >, aad,bad, so Axiom (1) implies aac >, z and
aac =, z for all z € A. By Axiom [f](i), A ~ {aac,aad} = {aac,bad}. Next, to show the
first relation in (v-a), note that bac =, z for all z € A, bac =, aad (by Axiom [3[i)), and
acc >, bac. Thus, applying Axiom @(ii) to A = {bac, aad} and B = {aac, bad}, we obtain
{bac,aad} = AU B = A. Finally, to show (v-b), suppose C ({a,b}) = {a,b}. Then we have
C (A) = {aad,bad}, and aac,bac =, z and aac,bac =, z for all z € A. Thus, applying
Axiom |§|(1) to A = {aac, bad} and B = {bac, aad} yields A ~ {aac, bad} and applying it to
A = {aac, aad} and B = {bac, bad} yields A ~ {aac,aad}. O

Lemma S28. Suppose Axioms hold, y € P(x), and y € S(x).

(i) There exists 6 € (0,1) such that y(1 —d)c € P(x) and y'(1 — §)c € S(x) for all c € A.
(11) y(1 —6)c € P(z(1—9)c) and y'(1 —0)c € S(x(1 —0)c) for allc € A and all § € (0,1).

Proof. (i) By definition, {z,y} = {y} and C ({z,y}) = {y}. Because the restriction of >
to singleton sets is continuous, and because A is compact, there exists d; € (0,1) such that
{z,y(1 = 8)c} = {y(1 —8)c} for all ¢ € A and § € (0,6,)[7] Also, by Axiom [3(iii-b) and
compactness, we have some dy € (0,1) such that C ({z,y(1 —d)c}) = {y(1 —d)c} for all
¢ € Aand § € (0,0,). Therefore, by taking 6° = min {8y, d,}, the first half of the statement
holds for all § < 8. An analogous argument yields §° such that the second half of the
statement holds for all § < §°. Thus, § < min {QP 0% } satisfies the desired property.

(ii) The conclusion is an immediate consequence of Axioms [4f(iii) and [5(iii). O

Proof of Lemmal[7. (i) Because y,c € P(z), Vps ({z,y(1 — d)c}) = Vps ({z,y} (1 — §) {z,c})
by Lemma [6{i). Therefore, using {x,y},{z,c} € Bp,

wp(c;@,y,0) = % [(1=0)Ves ({z,y}) + Vs ({2, ¢}) = (1 = 0)Vps ({2, 4}) — 6Vis ({c})]

= Vps ({z,¢}) — Vps ({¢}).

(ii) The result follows from Vpg ({z,y(1 — §)x}) = (1 — 0)Vps ({z,y}) + dVps ({x}).
(if) By LemmalB(i), Vs ({z, [y(1 — 8)c] a [y(1 — 8)¢]}) = Vs ({z, (1 — 6)c} o { y(1 — )c'}).
Therefore,

L=V ({2,4}) — Vs ({eac’)

Vs ({51 = 0)')
1-9

5 Ves ({2, y}) — aVes ({e}) = (1 = a)Ves ({¢})

2Let A = {z,y} .5{y}. By Axiom we have {z,y} > A > {y}. By Axiom i) and the continuity of Vpg
on singletons, we have {z,y(1 — d)c} = A and A > {y(1 — d)c} for all sufficiently small ¢.

wp(cad;x,y,0) :%VPS ({x, [y(1 = )] a[y(l —0)}) —

:%VPS ({z,y(1 = d)c}) +
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=awp(c;,y,0) + (1 — )wp(cs 2,9, 0).

(iv) Let 0" € (0,4). Note that y(1 —')c = y>5> [y(1 — &)c]. Because y,y(1 —d)c € P(z),
Lemma @(1) implies Vpg ({x,y‘s_&‘sl ly(1=0)c]}) = Vps ({z,y} ‘S_T‘y {z,y(1 —6)c}) . There-
fore, Vps ({z,y(1 = 8)c}) = $Vps ({z,y(1 — &')c}) — 55 Vps ({x,y}). Substituting this into
the definition, we have

wp(es,9,8) =5 Ves ({251 = 8)e) =V (f,u}) = 2=V ({4 = Vs ()

:wP(C; z,Y, 5/)

(v) Our goal is to show wp(c;z,y,d) = wp(c;a, b, ) +wp(a; x,y, ) or, equivalently,

1—-9

SVis ({291 = 8)e) = 5Vis ({a,b(1 = d)e}) —

~ Vos ({a}) + 3Vps ({,5(1 = D)a})

Vps ({a’ b})

By (ii), we have Vps ({a}) = +Vps ({a,b(1 — §)a}) — 55°Vps ({a,b}). Substituting this into
the above expression, our goal is to show

Ves ({z,y(1 —0)c} .5 {a,b(1 —d)a}) = Ves ({a,b(1 — d)c} .5{z,y(1 —d)a}).

Because y(1—6)c,y(1 —d)a € P(x) and b(1 —6)a, b(1 — §)c € P(a), Lemmal6fi) implies that
both sides of this equation equal Vpg ({z.5a,[(1 = §)(y +b)] .5[0(a+¢)]}). O

Lemma S29. Suppose Azioms hold, y(1 — d)c € P(x), and y'(1 — d)c € S(x) for all

ce A. Then, p = é—l > 0, where o € (0,1) is as defined in Axiom@ satisfies the following

condition: wp(c;x,y,0) = Pws(c;x,y,0) for all c € A.

Proof. We have

o [wp (¢;2,y,0) — Bws (¢; 1,9, 6)]
= Vps ({z,y(1 = d)c}) — (1 = 0)Vps ({x,y}) — 6Vps ({c})

— B [Vps ({z,y'(1 = 0)c}) = (1 = 0)Vps ({z,4'}) — 0Vps ({})]
1

=~ [aVes ({z,y(1 = 0)c}) + (1 — a)Vps ({z(1 = 0)e, ¢ (1 = d)c})]
- é [@Vps ({z(1 = 6)e,y(1 = b)c}) + (1 — a)Ves ({2, 5/ (1 = 6)c})]

= [aVps ({51 — 8)c}) + (1~ a)Vps ({9091

_ é {avps ({z(1 = 0)c,y(1 = d)c}) + (1 — a)Vps ({ez’y'(l_é)‘:})}
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=0

where the last equality holds because y(1 — d)c € P(x) N P(xz(l — d0)c) and y'(1 — d)c €
S(z) N S(z(1 — §)c) hold by Lemma [S28] so that Axiom [7] applies. Thus, wp (¢;z,y,0) =
pws (c;z,y', ) where 5 > 0. O

S.C.2 Supplemental Proofs for Theorem

Lemma S30. Suppose the data are generated by a PS preference. If AU{a} = A and a ¢
C(AU{a}), then p,(AU{a}) = {a} and w(a) = maxycy, (aufa}) W(¢) < Maxeey, (a)w(c).

Proof. Suppose AU{a} = Aanda ¢ C (AU {a}). f maxyc,, (aufa)) w(c) > maxeey, a) w(c),
then Vps(A U {a}) = G (AU {a},maxve,, (aufaph w()) = G (A, maxpey, (aufap) w(c)) <
G (A, maxuey, (ayw(c)) = Vps(A) where the second equality follows from a ¢ C (AU {a}).

This is a contradiction. Thus, maxyc,, (aufa}) W(¢') < MaxXpey, (a) w(c), and we must have
or(AU{a}) = {a} and maxyc,, (aufa)) w(c) = w(a)ﬁ O

Lemma S31. Suppose the data are generated by a weakly nondegenerate PS preference. If
a >y b, then r(a) > r(b) and w(a) > w(b).

Proof. Consider the following exhaustive cases.

Case 1. If {b} = {a,b}, then g(b,w(b)) = u(b) > max efap} g (¢, MaXpey, ({apy) wW(C)) >
g (b, maxeey, ({app w(C)) , 80 MaXeep, ((app) w(c') > w(b), yielding the conclusion.

Case 2. If {b} ~ {a,b} and C({a,b}) = {a}, then g(b, w(b)) = u(b) = g (a, maxuey, ({apy) w()) >
g (b, maxeey, ({app) w(c)) , so the conclusion holds as in Case 1.

Case 3. If a ~, band {a} ~ {a,b} > {b}, then we have a € C({a, b}) (otherwise, a >, b, a
contradiction). Thus, u(a) = g (a, maxye(qp w(c)) . This in turn implies maxyegqp w(c') =
w(a) > w(b). By weak nondegeneracy, the straight indifference curves of r and w cross each

other (see Lemma [I7)). Because r(a) = r(b) and a # b, we have w(a) > w(b). O

S.C.3 Proof of Theorem [1| (Necessity Part)

Below, we show that a nondegenerate preference that has a PS representation satisfies each
axiom. Proofs of Axiom [I] and Axiom [iii) are straightforward and omitted.

To proceed to other axioms, note first that the functions g(c¢, R) = u(c)—max {R — w(c),0}+
pmax{w(c) — R,0} and G(A, R) = max.ca g(c, R) are strictly decreasing and continuous in

R and that @ is continuous in A.

“Note that for any A, B € A, ¢r (AU B) € {¢ (4) ¢, (B) ¢ (A) U, (B)}.



Aziom[9(i). Suppose A = B, for all n and B, — B. Then, because maxue,, () w(c') >

3 /
lim,, 00 MaXeey, (B,) W(C'), Wwe have

Vps(A) =G (A, max w(c')) > lim G (Bn, max w(c’))

cdepr(A) n—+00 c'€pr(Bn)

=G (B, lim max w(c’))

n—00 c’€pr(Bn)

> G (B, max w(c’)) = Vps (B).

CIE‘PT(B)

Aziom[d(ii). Suppose A = B = C. Note

Vs (AaC)z(;(AaO, max w(c’))

depr(AaC)

=G (AaC,a max w(c')+ (1 —a) max w(c’)) :
cepr(A) cepr(C)
By the continuity of G, Vpg(AaC) = Vpg(C) < Vpg(B) for sufficiently small a € (0, 1).

Aziom [3(i). If a -, b, then Theorem [2] implies r(a) > r(b). Thus, Theorem [2] implies
b %, a, and Lemma implies b %, a. Similarly, if a >, b, then Lemma implies
r(a) > r(b) and w(a) > w(b), so we cannot have b >, a or b =, a.

Axiom @(Z@) Suppose a =* b =* c. By definition, there exist A 5 b and B 5 ¢ such that
AUu{a} = A, a ¢ C(AU{a}), BU{b} = B, and b ¢ C(B U {b}). Now, let C = AU B. By
Lemma , we have ¢, (C'U{a}) = {a} and w(a) < maxeey, (a) w(c') = maxeey, (o) w(c’)ﬁ
The representation implies a ¢ arg maxsecuqe} 9 (d,w(a)) = C(C' U {a}) and C U {a} > C.
Thus, a >* ¢. Next, if a ~, b ~, ¢, Theorem |2 implies [a =, b] A [b =, ] < [w(a) > w(b)] A
[w(b) > w(c)] = w(a) > w(c) & a =,y c.

Aziom @(iii—a). Suppose Aq,,C' = B for all n and «,, — «. Because

1‘ / — 1 / 1 _ / — /
0 516 = i, [, w06) + (1 =) i, ol = gl

we have AaC = B as follows:

Vos (AaC):G(A@C, max w(c’))

' epr(Aal)

= lim G (AanC’, max w(c’)) = lim Vps (Aa,,C) > Vpg(B).

n—00 cd€pr(AanC) n—00

Aziom [J(iti-b). Suppose a* € A is such that a* >, a for all a € A\ {a*}. Take

4“For any a’ € ¢,.(A) and V' € ¢,.(B), we have 7(a) > r(a’) > r(b) > r(V).
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any (An)n and any (ay), such that A, — A, a, € C(4,), and a, — a. By Theorem
r( ) for all a € A\ {a*}, so lim,_,o maxyecy, (a,) w(c') = w(a*). By continuity,
g (c maxyey, (4,) W(')) = g (c,w(a*)) forall c. By a, € C(A,), we have g (ay, maxeey, (a,) w(c)) =
G(A,, maxeeg, (a,)w(c')), so letting n — oo yields g (a,w(a*)) = G(A,w(a*)). Thus, a €
C(A).

Aziom[J(iv). By Lemma [18] aac =* bac = r(a) > r(b) = a =" b.

To prove some of the remaining axioms, we use the following result.

Lemma S32. Suppose the choice data are generated by a PS preference. (i) If b € P(a),
then w(a) < w(b). (i) If b € S(a), then w(a) > w(b). (iii) If b € Ni(a), then w(a) = w(b).

Proof. (i) By the representation and the definition of P(a), g(b, w(a)) > u(b) = g(b,w(b)),
so w(a) < w(b). (i) If b € S(a), we have g(b,w(a)) < g(b,w(d)), so w(a) > w(b). (iii) If
b € Ni(a), we have g(b,w(a)) = g(b,w(b)), so w(a) = w(b). O

Proof of Theorem 1| (Necessity), Continued.
Aziom [J](i). We consider the cases where mixed menus are binary; mixtures with a
singleton are considered in Axiom [4[(iii). Suppose b € P(a) UN;(a), d € P(c) UNi(c), and

f € P(e) UN;i(e). By Lemma [S32] r(a) > r(b), w(a) < w(d), r(e) > r(f), and w(e) < w(f).
Therefore, for any « € (0,1),

Ves({a,b}a{e, [})

= max [u(z)+ B (w(z) — wlaae))]

ze{abtaie,f}
= o max [u(@) + # (w(e) ~ w(a))] + (1 = ) max @)+ (w(z) = w(e)

= aVps({a,b}) + (1 — a)Vps({e, f}).

Similarly, Vps({c,d} a{e, f}) = aVps({c,d}) + (1 —a)Vps({e, f}). Thus, {a,b} = (=) {c,d}
implies {a,b} a{e, f} = (=) {c,d} a{e, f}.

Axiom (zz) Again, consider the cases where mixed menus are binary. Take any
{a,b},{e, f} € Bs such that a # b and e # f. By Lemma , we can assume without
loss of generality that r(a) > 7(b), w(a) > w(b), r(e) > r(f), and w(e) > w(f). Then,

Ves({a, b} a{e, f}) = max [u(z)+w(x) — w(ace)]
z€{a,byofe,f}
= aVps({a,b}) + (1 —a)Vps({e, f}).



Therefore, the conclusion of Axiom [(ii) holds.
Aziom [{|(iii). Note that for any = € A, we have

g (wacs,_max w(®))

' €pr(Aafct)

= au(z) + (1 — a)u(c) — amax{ max w(c) —w(:z),O} +a6max{w(m) — max w(c’),O}

' €pr(A) ' €pr(A)

c€pr(A)

= ag (x max w(c')) +(1— a)ule).

Thus, the conclusion follows from

Vps (Aa{c}) = maxg [ zac, max w(d )
PS( { }> rEA 9 ( depr(Aafc}) ( )

= amaxg <:c, max w(c’)) + (1 — a)u(c) = aVps (A) + (1 — a)Vps ({c}) .

' €pr(A)

Aziom [J(i). Consider first the case where b € P(a) UNi(a) and d € P(c) UNi(c).
Following the proof of Axiom [](i),

C({a,b} a{c,d})

= arg max [u(z)+ S (w(zr) — w(aac))]
ze{a,b}afc,d}

= ovarg max [u(@) + B (w(z) —w(a))] + (1 - ) arg mox [u(z) + B (w(z) —w(c))]

=C({a,b})aC({c,d}).

Proof for the case b € S(a) UN;(a) UZ(a) and d € S(c) UN;(c) UZ(a) is analogous: letting
w(a) > w(b) and w(c) > w(d) without loss of generality,

C{a,b} a{c,d}) = afg ;n{ax} [u(z) + w(x) —w(aac)] = C({a, b})aC({c, d}).
zefabhafcd

Before proving Axiom [f(ii), we note that Axiom [f(iii) can be shown by following the
proof of Axiom [iii). Thus, the proof of Axiom [5{iii) is omitted.

Aziom [J(ii). For (ii-a), suppose A = {a,b}a{a,c}, b € N>(a), ¢ € P(a), {a,bac} =
{b} a{a,c}, and C ({a,bac}) = {bac}. By Axiom [5(iii), we have C({b}afa,c}) = {bac}.
By the representation, g(bac,w(a)) = Vps({a,bac}) > Vps({b} a{a,c}) = g(bac, w(baa)).
Therefore, we have w(baa) > w(a), so w(b) > w(a). Because r(a) > r(b),r(c) and w(a) <
w(b), w(c), following the proof of Axiom [fi) yields C (4) = C ({a,b}) aC ({a, c}). Proof of

(ii-b) is analogous, once we note that the assumptions imply g(bac, w(baa)) > g(bac, w(a))
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so that we have w(a) > w(b), as well as r(a) > r(b),r(c) and w(a) > w(c).

Aziom @(@) Suppose there exists a* € A such that a* >, ¢ and a* =, ¢ for all ¢ €
AU B. Then, by Theorem [2, maxycy, (aup)w(y) = maxye,, (1) w(y) = w(a*). Therefore,
Vps(AU B) = maxgecaup ¢ (x,w(a*)) > maxgea g (2, w(a*)) = Vps(A) and the inequality is

strict if and only if C(AU B) N A = arg max g (z, w(a*)) N A = 0.
acE AUB

Aziom[6(ii). Suppose there exists a* € A such that a* =, ¢ for all c € AUB and a* =, a
for all @ € A, and there exists b* € B such that b* =, a*. By Lemma and Theorem
2| r(0*) = r(a*) > r(b) for all b € B and w(b*) > w(a*). Without loss of generality, let
b* be a maximizer of >, on ¢,(B). Then, by Theorem , maXye,, (auB) W(Y) = w(b*) >
w(a*) = maxye,, (a) w(y). Therefore, if there exists ¢ € C(AU B) N A, then Vpg(AU B) =
g(c;w(b?)) < g(c,w(a”)) < Ves(A).

Aziom[7] Take any a,b,c,d € A such that ¢ € P(a) NP(b) and d € S(a) N S(b). Then,

Ves({a,c}) + BVps({b, d}) = u(c) + B (w(c) — w(a)) + B [u(d) + w(d) — w(b)]
= u(c) + f (w(c) —w(b)) + B [u(d) + w(d) — w(a)]
= Vpg({b, C}) + BVps({a, d})

Therefore, by letting o = € (0,1), and using {e>?} ~ {b,d} and {e*?} ~ {a,d},
Vps ({a, ¢} o {eb’d}) = aVps ({a,c}) + (1 — a)Vps ({"})
ps ({b,c}) + Vps ({e*}) = Vps ({b, ¢} a {e™*}).

Aziom[§ Suppose there exists a* € ANDB such that a* >, cand a* =, cfor allc € AUB.
By Theorem 2, maxye,, (4) w(y) = maxye,, () w(y) = w(a*). Now, suppose a,b € AN B,
a € C(A),and b € C(B). By the representation, g (a,w(a*)) = g (b,w(a*)) > g (¢, w(a*)) for
all c € AU B. Therefore, a € C (B).

S.C.4 Other Proofs
S.C.4.1 Proof of Claim [1

(i) By assumption, there exist A € A and a € A such that AU{a} > A and a ¢ C(AU{a}).
By Lemma [S30} (AU {a}) = {a} and w(a) < maxwe,,a)w(c’). Thus, for some b € A, we
have r(a) > r(b) and w(a) < w(b). (ii) Without loss of generality, assume {a} = {b} for all
b € A. By assumption, maxyc,, (1) w(y) = w(c) > w(a) for some ¢ € A (otherwise, we would
have A = {a}). Therefore, we have u(a) > u(c), w(a) < w(c), and r(a) < r(c). If we further
had u(a) = u(c), then A = {c} ~ {a}, a contradiction. Thus, u(a) > u(c). O
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S.C.4.2 Proof of Claim [2

(i) If {a,b} = {b} and C({a,b}) = {b}, then we must have maxyc,({ap}) w(y) = w(a) < w(b),
so the DM feels pride by choosing b at {a,b}. Conversely, pride immediately implies {a, b} >~
{b}, and {a,b} > {a} follows from the representation and a ¢ C({a,b}). (ii) Similar to (i).
[

S.D Graphical Illustrations of Nondegeneracy and >,

In this section, we provide graphical illustrations of the nondegeneracy concepts and the
elicitation of the reference ranking, with dim(Z) = 3. Figure [S1|illustrates the concepts of
nondegeneracy and weak nondegeneracy, providing an example to distinguish the two. It
also shows why, in Definition [I} a@ >=* b should be defined using a general menu A 5 b and
not just A = {b}, and it presents a graphical illustration of Theorem . Figure then
demonstrates how Definition [I(ii-b) helps establish a >, b when we cannot establish the
relation via condition (ii-a) (i.e., a >=* b), which occurs when a is on the boundary of A.
Figure illustrates nondegeneracy, which requires that there exist x,y,y’ € A such
that y € P(x) and vy € S(x). For P(z) to be nonempty, we must have some y € A such
that r(z) > r(y), w(z) < w(y), and g(z,w(z)) < g(y, w(x)). The first two conditions ensure
that the reference point at {x,y} is lower than that at {y}, and adding the third condition
ensures that z is not chosen from {z,y}. Similarly, for S(z) to be nonempty, we must have
y' € A such that r(x) > r(v/), w(z) > w(y'), and g(z,w(z)) < g(y', w(z)), ensuring that the
reference point at {x,y'} is higher than that at {¢/} and that x is not chosen from {z,y'}.
Figure provides an example in which the nondegeneracy property is violated. To
see this, note that for any a,y € A such that r(a) > r(y) and w(a) < w(y), we have
gla,w(a)) > g(y,w(a)), so P(a) is empty. In this case, the reference-lowering alternative a
is also the chosen one, so observing {a,y} > {y} does not allow us to tell if the larger menu
is preferred because a lowers the reference point or because a is the preferred choice.
However, the preference illustrated in Figure satisfies the weak nondegeneracy axiom.
To see this, note that (i) the reference point at {EL,Z), c, d}, i.e., w(a), is lower than the
reference point at {b,c,d}, i.e., w(d), and (i) C({b,c,d}) = C({@,b,c,d}) = {c}. In this
case, a makes the larger menu more desirable even though it is not chosen there, by setting
the reference point lower than the reference point at {5, c, d}. Therefore, we have a =* b.
This example shows why we cannot confine Definition (1) to A= {b}: Even if r(a) > r(b),
we may have @ € C({a,b}) (a is chosen) or w(a) > w(b) (a sets a weakly higher reference

point), preventing us from concluding @ =* b with A = {B} Thus, to conclude @ >* b, we
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may need a larger menu A that contains a “choice fixer” ¢ € Pj(a) and a “higher reference
setter” d € Py(a). The figure also graphically illustrates Theorem , in particular that we
observe a =* b whenever r(a) > r(b), as long as P;(a) and P,(a) are nonempty, which is a
quite weak condition.

The nondegeneracy condition is also a quite weak condition in general, because it holds
generically if dim(Z) > 4. To see the intuition, note that P(z) is characterized by three linear
inequalities (involving r, w, and u 4+ Sw) and that S(z) is also characterized by three linear
inequalities (involving r, w, and u+w), as the above discussion of Figuresuggests. Thus,
as long as the coefficient matrices (of dimension 3 x (dim(Z) — 1), because the probabilities
must sum to one) have a rank of three, which holds generically, they are nonempty.

Figure [S2] illustrates how we can elicit @ =, b when a cannot satisfy @ >=* b even though
data are generated by a PS preference with r(a) > r(b). Figure depicts the indifference
curves of the same PS preference as in Figure [SIb] However, because @ is on the boundary
of A, Py(a) is empty, and we cannot establish @ =* b with any A > b. In words, when @ is a
unique reference alternative at AU {a} (i.e., r(a) > r(y) for all y € A), the reference point
is necessarily higher than that at A, so AU{a} > A does not occur as long as a is unchosen
there.

However, we can still conclude r(a) > r(b) by using some ¢ € int(A) such that r(a) >
r(c) > r(b), as Figure demonstrates. First, we can elicit ¢ =* b by Lemma [18] (note also

that Pj(c) and Ps(c) are nonempty). Moreover, we cannot have ¢ >* a, as ¢ cannot set a

reference point at A whenever @ € A. Thus, we can conclude @ >, b via Definition [1f(ii-b).
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Figure S1: Nondegeneracy and Weak Nondegeneracy

(b) Weak Nondegeneracy

(a) Nondegeneracy

Py(@)
P(x)
S(x) Py(a)
Indifference curve Indifference curve
of g(-, w(x)) of g(,w(@))

Notes: Panel (a) presents an example of a PS preference that satisfies nondegeneracy. Panel (b) presents an example of a PS preference that satisfies
weak nondegeneracy but not nondegeneracy, because P(a) is empty for all @ € A. Each dashed or solid straight line represents an indifference curve
of u, w, u+w, u+ fw or r, with an arrow indicating the increasing direction of the utility function. The bold solid line kinked at x in Panel (a) (at @
in Panel (b)) denotes the indifference curve of the function g(-, w(z)) (¢9(-,w(a))) defined in Lemma In Panel (a), the black and red shaded areas
depict P(x) and S(x), respectively, defined in Eq. and in Section In Panel (b), the black and red shaded area depicts Pi(a) and Pa(a),
respectively, defined in Lemma [I7] See the text in Appendix [S.D]for details.



a1

Figure S2: Reference Elicitation on the Boundary

(a) Non-existence of d & P»(a) (b) Mediating alternative ¢ € int(A)

Py (@) P;(c)
P@=9 P,(c)

Indifference curve Indifference curve
of g(-, w(a)) of g(,w(c))

Notes: Panel (a) presents an example of alternatives a,b € A such that r(a) > 7(b) but @ #* b. Panel (b) illustrates how we can establish @ =, b via
Definition ii-b) using a mediating alternative ¢ € int(A). Each dashed or solid straight line represents an indifference curve of u, w, u + w, u + fw
or r, with an arrow indicating the increasing direction of the utility function. The bold solid line kinked at a in Panel (a) (at ¢ in Panel (b)) denotes
the indifference curve of the function g(-,w(a)) (g(,w(c))) defined in Lemma[I0] In Panel (a), the black shaded area depicts P;(a) defined in Lemma
In Panel (b), the black and red shaded areas depict P;(c) and P»(c), respectively. See the text in Appendixfor details.
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